Polyhydroxyalkanoates (PHAs) have gained much attention as biodegradable polymers, many efforts are being made to minimize the cost of PHAs by finding cheap carbon source depending on the type of microorganism and fermentation conditions. The aims of this study were to evaluate the effects of different glucose concentrations and other important conditions on the PHA production by Bacillus cereus isolated from soil. Polyhydroxyalkanoates PHAs accumulated by soil microorganisms were examined by screening the isolated bacteria using Sudan B Black and Nile Blue staining process. A Gram positive strain was identified using the 16s rRNA gene, deposited in the NCBI GenBank sequence database. Different growth conditions (favorite glucose concentrat
... Show MoreMilling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu
... Show MoreStructure of unstable 21,23,25,26F nuclei have been investigated
using Hartree – Fock (HF) and shell model calculations. The ground
state proton, neutron and matter density distributions, root mean
square (rms) radii and neutron skin thickness of these isotopes are
studied. Shell model calculations are performed using SDBA
interaction. In HF method the selected effective nuclear interactions,
namely the Skyrme parameterizations SLy4, Skeσ, SkBsk9 and
Skxs25 are used. Also, the elastic electron scattering form factors of
these isotopes are studied. The calculated form factors in HF
calculations show many diffraction minima in contrary to shell
model, which predicts less diffraction minima. The long tail
This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
The necessities of steganography methods for hiding secret message into images have been ascend. Thereby, this study is to generate a practical steganography procedure to hide text into image. This operation allows the user to provide the system with both text and cover image, and to find a resulting image that comprises the hidden text inside. The suggested technique is to hide a text inside the header formats of a digital image. Least Significant Bit (LSB) method to hide the message or text, in order to keep the features and characteristics of the original image are used. A new method is applied via using the whole image (header formats) to hide the image. From the experimental results, suggested technique that gives a higher embe
... Show MoreThis research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreIn this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.
The effect of the initial pressure upon the laminar flame speed, for a methane-air mixtures, has been detected paractically, for a wide range of equivalence ratio. In this work, a measurement system is designed in order to measure the laminar flame speed using a constant volume method with a thermocouples technique. The laminar burning velocity is measured, by using the density ratio method. The comparison of the present work results and the previous ones show good agreement between them. This indicates that the measurements and the calculations employed in the present work are successful and precise