Security concerns in the transfer of medical images have drawn a lot of attention to the topic of medical picture encryption as of late. Furthermore, recent events have brought attention to the fact that medical photographs are constantly being produced and circulated online, necessitating safeguards against their inappropriate use. To improve the design of the AES algorithm standard for medical picture encryption, this research presents several new criteria. It was created so that needs for higher levels of safety and higher levels of performance could be met. First, the pixels in the image are diffused to randomly mix them up and disperse them all over the screen. Rather than using rounds, the suggested technique utilizes a cascaded-looking composition of F-functions in a quadrate architecture. The proposed F-function architecture is a three-input, three-output Type-3 AES-Feistel network with additional integer parameters representing the subkeys in use. The suggested system makes use of the AES block cipher as a function on a Type-3 AES-Feistel network. Blocks in the proposed system are 896 bits in length, whereas keys are 128 bits. The production of subkeys is encrypted using a chain of E8- algorithms. The necessary subkeys are then generated with a recursion. The results are reviewed to verify that the new layout improves the security of the AES block cipher when used to encrypt medical images in a computer system.
A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreFluoroscopic images are a field of medical images that depends on the quality of image for correct diagnosis; the main trouble is the de-nosing and how to keep the poise between degradation of noisy image, from one side, and edge and fine details preservation, from the other side, especially when fluoroscopic images contain black and white type noise with high density. The previous filters could usually handle low/medium black and white type noise densities, that expense edge, =fine details preservation and fail with high density of noise that corrupts the images. Therefore, this paper proposed a new Multi-Line algorithm that deals with high-corrupted image with high density of black and white type noise. The experiments achieved i
... Show More<p class="0abstract">The rapidly growing 3D content exchange over the internet makes securing 3D content became a very important issue. The solution for this issue is to encrypting data of 3D content, which included two main parts texture map and 3D models. The standard encryption methods such as AES and DES are not a suitable solution for 3D applications due to the structure of 3D content, which must maintain dimensionality and spatial stability. So, these problems are overcome by using chaotic maps in cryptography, which provide confusion and diffusion by providing uncorrelated numbers and randomness. Various works have been applied in the field of 3D content-encryption based on the chaotic system. This survey will attempt t
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.
In this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm
In this paper, a method for hiding cipher text in an image file is introduced . The
proposed method is to hide the cipher text message in the frequency domain of the image.
This method contained two phases: the first is embedding phase and the second is extraction
phase. In the embedding phase the image is transformed from time domain to frequency
domain using discrete wavelet decomposition technique (Haar). The text message encrypted
using RSA algorithm; then Least Significant Bit (LSB) algorithm used to hide secret message
in high frequency. The proposed method is tested in different images and showed success in
hiding information according to the Peak Signal to Noise Ratio (PSNR) measure of the the
original ima
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreIn this paper, a modified derivation has been introduced to analyze the construction of C-space. The profit from using C-space is to make the process of path planning more safety and easer. After getting the C-space construction and map for two-link planar robot arm, which include all the possible situations of collision between robot parts and obstacle(s), the A* algorithm, which is usually used to find a heuristic path on Cartesian W-space, has been used to find a heuristic path on C-space map. Several modifications are needed to apply the methodology for a manipulator with degrees of freedom more than two. The results of C-space map, which are derived by the modified analysis, prove the accuracy of the overall C-space mapping and cons
... Show More