To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 are assigned to C–H stretching vibration of epoxy produced at the defect sites of acid-oxidized carbon fiber surface. SEM image shows a better interface bonding between the fiber and the matrix of modified composites (MWCNTs-CF/Ep) than those of unmodified composite. The loss factor curve of CF-MWCNTs/Ep composites is the narrowest compared with neat epoxy and CF/Ep composites which evinces that the length distribution range of molecular chain segments in the matrix is the narrowest. From the dependence of the AC conductivity on temperature, we can see that σAC increases when temperature increases. The increase in electrical conductivity of the composites may be a result of the increased chain ordering due to annealing effect. The use of MWCNTs to modify the surface of carbon fiber resulted in a large amount of junctions among MWCNT causing an increase in the electrical and thermal conductivity by forming conducting paths in the matrix. The MWCNTs-CF/Ep composite shows better thermal stability than unmodified composites. The strong interaction between CF and MWCNTs can retard diffusion of small molecules from the resin matrix at high temperature and hence, result in the improved thermal stability of the modified CF/Ep composite.
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreThermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c
... Show MoreBackground: Dental erosion is a common oral condition which results due to consumption of high caloric and low pH acidic food such as carbonated drinks and fruit juices. It is expected that these food types can cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. So, this study aimed to evaluate and compare the erosive potential effects of orange fruit juice and Miranda orange drink on the microhardness of an orthodontic composite material. Materials and methods: Thirty discs with a thickness of 2 mm and a diameter of 10 mm were prepared from orthodontic bonding composite. The prepared discs were equally divided into three groups (n=10). Microhardness analysis was carried out both prior to
... Show MoreThe aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each
Gas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show MorePreviously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show MoreIn this work, corrosion parameters were evaluated using potentiodynamic polarization curves. In order to determine corrosion parameters of potential and current density of the interesting metal, carbon steel, environmental conditions of external corrosion of buried carbon steel pipeline in Iraqi soil were prepared in the laboratory using simulated prepared conditions. Solutions of sodium chloride at different concentrations (300, 1100, 1900, 2700, and 3500 ppm) were used. pH of solution were acidic at pH =5, and alkaline at pH = 9. Laboratory conditions were similar to those of Iraqi soil where the pipelines were buried. Temperature was constant at 20 °C. Potentiodynamic polarization curves, of potential vs. log current density, were ob
... Show More