Nanostructured Al2O3has been applied as a protective coating against corrosion of the carbon steel (C.S) in seawater environment (3.5% NaCl) at temperatures range (298-328)K. Aluminananoparticles were deposited on carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(acrylic acid) (PAA) as polymeric charging agent. Meanwhile, thesurface morphology was examined using Atomic-force microscopy (AFM). The cross-section AFM showed that the particles sizes for the Al2O3 NPs is around 60-80 nm. The anticorrosion behaviour of coated C.S was investigated in 3.5% NaCl at temperature range 298-328 K by potentiodynamic polarization measurements. Results show that using PAA in suspension coat increased PE% when compared with PE% in absence of PAA and gaves resistance in above temperature range. Kinetic parameters (activation energy and pre-exponential factor) were calculated and discussed. Also, thermodynamic Values ΔG and ΔH were calculated and it shows that corrosion reaction was spontaneous and exothermic in nature.
In present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MorePoly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocompo
... Show MoreThe present study investigates the characterization of silver nanoparticles (AgNPs) synthesized using Fusarium solani and their impact on tomato seed germination, plant growth, and disease resistance. A visible color change from yellow to dark smoky indicated the formation of AgNPs, while UV-visible spectrophotometry revealed an absorbance peak at 437 nm, confirming their presence. Atomic force microscopy analysis showed that the AgNPs ranged from 0 to 39.27 nm in size, with an average height of 5.772 nm, while scanning electron microscopy highlighted their diverse surface morphology. The application of AgNPs and mycorrhizal fungi significantly improved tomato seed germination rates, plant height, and dry weight compared to untreate
... Show MoreVitamins play an important role in the human health, and thus they are the kind of major nutrients in the body. Chemical products perform numerous physiological functions and can jeopardize health jointly in their absence and surplus. Therefore, it is necessary to establish methods for observation vitamin levels in various molds. In this review paper, the most methods of determination used are high performance liquid chromatography (HPLC), spectrophotometric and potentiometric techniques by listed the value of : slope, linear range, correlation coefficient, detection limit, the max of wavelength and PH and compared with these methods.
Investigation of the adsorption of acid fuchsin dye (AFD) on Zeolite 5A is carried out using batch scale experiments according to statistical design. Adsorption isotherms, kinetics and thermodynamics were demonstrated. Results showed that the maximum removal efficiency was using zeolite at a temperature of 93.68751 mg/g. Experimental data was found to fit the Langmuir isotherm and pseudo second order kinetics with maximum removal of about 95%. Thermodynamic analysis showed an endothermic adsorption. Optimization was made for the most affecting operating variables and a model equation for the predicted efficiency was suggested.
Ursolic acid (UA, 3 ?-hydroxy-urs-12-en-28-oic acid) are isomeric triterpenic acids. The high quantities of pentacyclic triterpenoids in Scabiosa species seems to be obvious and there is an evidence that most of pentacyclic triterpenoids that have been isolated are saponins. This is one of the most important characteristic of the genus Scabiosa, the main aglycones are ursolic acid and oleanolic acid. In the current study, isolation from the aerial part and roots of Scabiosa palaestina L. was performed using Preparative HPLC. Furthermore, detection and quantitation of ursolic acid was performed by high performance thin layer chromatography (HPTLC). The identification of isolated triterpenoid involves two methods including FT-IR coupl
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show More