This research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m3. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the model pile are: the lateral and vertical displacements at soil surface, the rotation at soil surface, bending moment profiles, pile deflection profiles, pile rotation profiles and shear force profiles. Some of these results are measured experimentally and others are calculated theoretically based on the measured strains. Based on the results of tests, it was found that the maximum soil reaction increased axially loaded piles by 43, 19, and 43%, when the embankment is at distances 2.5, 5, and 10D, respectively. The flexible pile provides more resistance to soil movement pressure and increasing the distance between the embankment and pile reduces the effects of embankment. The behavior of axially loaded pile is different than that of the pile without axial loading.
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav
... Show MoreThe electron mirror phenomenon has been explored to describe the behavior of a probing electron trajectory inside the chamber of scanning electron microscope (SEM). This investigation has been carried out by means of the modulated mirror plot curve technique. This method is based on expanding sample potential to a multipolar form to detect the actual distribution of the trapped charges. Actually an experimental result is used to guiding results of this work toward the accurate side. Results have shown that the influence of each type of multipolar arrangement (monopole, dipole, quadruple, octopole … etc.) mainly depends on the driving potential.
This paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show MoreThis research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thic
... Show MoreSolid waste generation and composition in Baghdad is typically affected by population growth, urbanization, improved economic conditions, changes in lifestyles and social and cultural habits.
A burning chamber was installed to burn cellulosic waste only. It was found that combustion reduced the original volume and weight of cellulosic waste by 97.4% and 85% respectively.
A batch composting study was performed to evaluate the feasibility of co-composting organic food waste with the cellulosic bottom ash in three different weight ratios (w/w) [95/5, 75/25, 50/50].
The composters were kept in controlled aerobic conditions for 7 days. Temperature, moisture, and pH were measured hourly as process succe
... Show MoreCollapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreA field trial was conducted in Experimental Station of The Field Crops Department – College Of Agriculture In Abu Ghraib, University of Baghdad to assess the effect of sulphur applications and the time after application on pH and EC of soil sample solutions ,and on the growth and yield of rape seed (Brassica napus L.)A split plot design was used with four replications , The main plot included four sulphur applications levels (0,2000,3000,4000Kg S/ha) the sub plot were the time after application (0,1,2,and 3 moths) .Sulphur application significantly decreased soil pH value ,although that decrease reached minimum parameter after two months from application date .Rather increment of sulphur application level significantly raised soil EC val
... Show MoreUnsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show More