An annular two-phase, steady and unsteady, flow model in which a conductingfluid flow under the action of magnetic field is concavely. Two models arepresented, in the model one; the magnetic field is perpendicular to the long side ofthe channel, while in the model two is perpendicular to the short side. Also, westudy, to some extent the single-phase liquid flow.It is found that the motion and heat transfer equations are controlled by differentdimensionless parameters namely, Reynolds, Hartmann, Prandtl, and Poiseuilleparameters. The Laplace transform technique is used to solve each of the motion andheat transfer equations. The effects of each of dimensionless parameters upon thevelocity and heat transfer is analyzed.A comprehensive study for Model 1, and 2 is given. Also, a comparison studyamong steady, unsteady, single-phase, two-phase for Model 1, and Model 2 isconsidered.
Experimental study of heat transfer coefficients in air-liquid-solid fluidized beds were carried out by measuring the heat rate and the overall temperature differences across the heater at different operating conditions. The experiments were carried out in Q.V.F. glass column of 0.22 m inside diameter and 2.25 m height with an axially mounted cylindrical heater of 0.0367 m diameter and 0.5 m height. The fluidizing media were water as a continuous phase and air as a dispersed phase. Low density (Ploymethyl-methacrylate, 3.17 mm size) and high density (Glass beads, 2.31 mm size) particles were used as solid phase. The bed temperature profiles were measured axially and radially in the bed for different positions. Thermocouples were connecte
... Show MoreA numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra
Integration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.
The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design. In addition the pressure, due to the recirculation velocity of liquid around the draft
... Show MoreThe thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreThis paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo
... Show MoreRecently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by
... Show MoreEnhancement of heat transfer in the tube heat exchanger is studied experimentally by using discrete twisted tapes. Three different positions were selected for inserting turbulators along tube section (horizontal position by α= 00, inclined position by α= 45 0 and vertical position by α= 900). The space between turbulators was fixed by distributing 5 pieces of these turbulators with pitch ratio PR = (0.44). Also, the factor of constant heat flux was applied as a boundary condition around the tube test section for all experiments of this investigation, while the flow rates were selected as a variable factor (Reynolds number values vary from 5000 to 15000). The results s
... Show MoreAs the temperature of combustion gases is higher than the melting temperature of the turbine materials, cooling of turbine parts in a gas turbine engine is necessary for safe operation. Cooling methods investigated in this computational study included cooling flow losses. Film-cooling is one typically used cooling method whereby coolant is supplied through holes passage, in present study the holes placed along the camber line of the blade. The subject of this paper is to evaluate the heat transfer that occur on the holes of blade through different
blowing coolant rates. The cases of this study were performed in a low speed wind tunnel with two tip gap at small and large (0.03 and 0.09cm) and multiple coolant flow rates through the fil