<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
There are two ways that the contract might be formed with (contracting between persons who are attended and contracting between absence persons).the need for determining the precise moment of the contract , is so clear because there is a specify period separate between the declaration of acceptance and the knowledge with it .and it is clear from the four theories known for jurisprudence (theory of the declaration of the acceptance, theory of exporting the acceptance , theory of the arrival of the acceptance , theory of the knowledge with the acceptance ) . It is difficult to promote one theory on another one if we look at each one and the justification of its supporters and what the opponents of each theory expose. Legal background and diff
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreBackground: Recent implant surgical approach aims to cause less trauma, invasiveness and pain as much as possible and to reduce patient and surgeon discomfort, time of surgery and time needed for functional implant loading. Flapless surgical techniques considered recently as one of the most popular techniques that may achieve these aims especially enhancing osseointegration and subsequently implant stability within less time than the traditional flapped surgical technique. So this study aimed to make a comparison between flapped and flapless surgical techniques in resulted implant stability according to resonance frequency analysis RFA and in duration of surgical operation. Materials and methods: A total of 26 patients with 41 implants (o
... Show MoreBackground: The physiologic, biochemical and anatomic changes that occur during pregnancy are extensive and may be systemic or local. However, most of these changes return to pre pregnancy status six weeks postpartum. The aim of the study was to investigate the effect of dental caries among preterm postpartum women and it's relation to baby birth weight and salivary interleukin-6 (IL-6). Materials and methods: 66 postpartum women were examined, 33 preterm postpartum women (study group) and 33 full term postpartum women (control group). Dental caries was recorded using, decayed, missing and filled surfaces index, also assess the decayed lesion by severity. Salivary samples were taken from all subjects to estimate salivary IL-6 levels. Babie
... Show MoreA new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreThe purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show MoreVariable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show More In this paper we introduce many different Methods of ridge regression to solve multicollinearity problem in linear regression model. These Methods include two types of ordinary ridge regression (ORR1), (ORR2) according to the choice of ridge parameter as well as generalized ridge regression (GRR). These methods were applied on a dataset suffers from a high degree of multicollinearity, then according to the criterion of mean square error (MSE) and coefficient of determination (R2) it was found that (GRR) method performs better than the other two methods.
It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.