Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years

Breast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
COMPARISON OF SOME NONPARAMETRIC METHODS TO DETERMINE THE NUMBER OF RADIATION DOSES FOR BREAST CANCER PATIENTS

Radiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu

... Show More
Scopus
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Research Journal Of Pharmacy And Technology
Molecular Genetic variability in the D-loop region for females with Breast Cancer and the effect of the Chemotherapy

Scopus (6)
Scopus Crossref
View Publication
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Assessment of Health Beliefs Among Iraqi Breast Cancer Patients in Baghdad using either Tamoxifen or Trastuzumab

Breast cancer is the most diagnosed form of malignant tumour in Iraqi women. Tamoxifen and trastuzumab are highly effective adjuvant therapy for breast cancer.

This study's objectives were to define the patient's belief in tamoxifen or trastuzumab when used as adjuvant therapy and to determine the variation in belief between the two medications in a sample of Iraqi breast cancer patients.

The cross-section survey was conducted using the BMQ-Specific questionnaire. Ninety-seven participants (sixty-seven tamoxifen, thirty trastuzumab) participated in this study.

The mean of specific-necessity scale for tamoxifen was (3.7) and for trastuzumab (4). The findings showed a high necessity for both medicines, and there wer

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research &amp; Development
Loss of the Epigenetically Inactivated-X-Chromosome (Barr Body) a Potential Biomarker for Breast Cancer Development

Scopus (1)
Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Plasma levels and diagnostic utility of MMP-2 and TIMP-2 in the diagnosis of Iraqi women with breast tumor: A comparative study with Ca 15-3

Scopus Crossref
View Publication
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF