Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Al-kindy College Medical Journal
The Expression of Epstein-Barr virus in Breast cancer in relation to age
...Show More Authors

Background: Breast cancer is the most common
malignancy affecting females worldwide. The association
of Epstein-Barr virus (EBV) with this cancer is a longstanding
interest to this field.
Aim: to investigate the presence of EBV in breast tumor
tissue in relation to age.
Patients and Methods: Paraffin-embedded tissue blocks
from 45 female patients with breast tumors (ranged in age
from 28 to 85 years) were retrieved. The cases were
grouped into two categories: group (A): included 30 cases
with breast carcinoma and group (B): included 15 cases
with benign breast diseases as a control group .The
expression of EBV protein was examined
immunohistochemically.
Results: Twelve (40%) of the 30 breast canc

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 27 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Assessment of Some Hematological parameters in Iraqi Women with Different Breast Cancer Stages
...Show More Authors

Breast cancer (BC) is the most commonly diagnosed cancer in women. The metabolism of iron is closely regulated by hepcidin which exerts its action by interacting with a ferroportin.

 The aim of the present study was to assess the alterations in the levels of some serum biomarkers that have a role in iron homeostasis (hepcidin and ferroportin) in addition to hematological parameters (hemoglobin, leukocyte and platelets count) in different stages of BC.

This study included 66 women with BC. The patients were categorized as follows : group 1 includes :22 patients with stage I disease ,group 2 includes: 22 patients with stage II disease ,and group 3 include: 22 patients with stage III disease .Group 4 includes :22 appare

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Al-kindy College Medical Journal
The Expression of Epstein-Barr virus in Breast cancer in relation to age
...Show More Authors

Background: Breast cancer is the most common
malignancy affecting females worldwide. The association
of Epstein-Barr virus (EBV) with this cancer is a longstanding
interest to this field.
Aim: to investigate the presence of EBV in breast tumor
tissue in relation to age.
Patients and Methods: Paraffin-embedded tissue blocks
from 45 female patients with breast tumors (ranged in age
from 28 to 85 years) were retrieved. The cases were
grouped into two categories: group (A): included 30 cases
with breast carcinoma and group (B): included 15 cases
with benign breast diseases as a control group .The
expression of EBV protein was examined
immunohistochemically.
Results: Twelve (40%) of the 30 breast canc

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Biochemical And Cellular Archives
Association Of Human Cytomegalovirus With Her2 Protooncogene Overexpression In Iraqi Breast Cancer Patients
...Show More Authors

Human cytomegalovirus (HCMV) has a worldwide distribution and common infections. The presence of HCMV genome and antigens has been detected in many kinds of human cancers. The proto-oncogene Her2/neu is overexpressed in 25% to 30% of human breast cancers and frequently associated with tumor aggressiveness and worse prognosis. Examination was applied to detect different HCMV antigens and to demonstrate their correlation with Her2/neu overexpression in breast cancer. The present study includes samples from 70 women of 60 breast cancer patients and 10 normal breast tissues. Formalin-fixed paraffin embedded tissue blocks were obtained from each woman according to ethical approval. Human cytomegalovirus early antigen expression was detected in 5

... Show More
Preview PDF
Scopus (6)
Scopus
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Performance assessment of biological treatment of sequencing batch reactor using artificial neural network technique.
...Show More Authors

Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa

... Show More