Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Gene Polymorphism of Human Lymphotoxin Alpha in Iraqi Breast Cancer Women

     The lymphotoxin alpha is a highly polymorphic gene and any genetic variation in it may lead to an increased production of cytokine LTA thus helping tumor development and progression. The aim of this work was to investigate the association of LTA polymorphism with the risk of breast cancer among Iraqi women. The findings of this study demonstrated that the age group > 50 years old formed 52% of the breast cancer patients (P <0.001). Hardy–Weinberg equilibrium analysis revealed that genotype frequencies of most SNPs in BC patients and HC were consistent with HWE. No association was found between LTA polymorphisms and BC. Moreover, seven haplotypes were detected in BC group. However, only one of them developed sign

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Molecular detection of Epstein Barr Virus in Women with Breast cancer

Background: Epstein Barr Virus (EBV) infection has been implicated in pathogenesis of several types of carcinomas such as nasopharyngeal carcinoma, gastric cancer and bladder cancer and has recently been associated with breast cancer.
Objective: To evaluate the relations between Epstein Barr virus-encoded small RNA (EBER) and breast cancer.
Methods: Twenty two cases of breast cancer were retrieved from the Al-Kadhimiya Teaching Hospital in Baghdad. Clinical data were analyzed from the medical records and formalin fixed, paraffin embedded tumor tissue were examined by Chromogeneic in situ hybridization (ISH) technique for the detection of EBER.
Results: The expression of EBER in tissues patients with breast cancer in the present

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Mar 15 2022
Journal Name
Gene Reports
Genotyping of Human Cytomegalovirus Glycoprotein N in Iraqi Breast cancer Patients

Human Cytomegalovirus (HCMV) is an enveloped ubiquitous ds-DNA virus that has been implicated in several types of malignancies. The current work was conducted in the period extending from (November 2018 to the end of October 2019) and aimed to assess the frequency of glycoprotein N (gN) genotypes of HCMV. A total number of 91serum and plasma specimens were collected to fulfill this purpose from females (71 breast cancer patients, and a control group of 20 females) attending Al-Amal hospital for cancer management and Baghdad teaching hospital. The molecular part of this data was achieved through both PCR and Multiplex PCR for detection of HCMV gN (UL73) entire gene as well as for genotyping. gN was detected in 36/71 (50.7%) of breast cancer

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Detection of Anti-cancer Activity of Silver Nanoparticles Synthesized using Aqueous Mushroom Extract of Pleurotus ostreatus on MCF-7 Human Breast Cancer Cell Line

     In this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.

Scopus Crossref
View Publication
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Scopus Crossref
Preview PDF
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Iraqi Journal Of Science
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Journal Of The Faculty Of Medicine Baghdad
CAF combination chemotherapy in breast cancer patients with liver metastasis

Background: management modalities for liver metastasis from primary breast cancer are evolving steadily but systemic chemotherapy remains the mainstay of treatment.
Patients and methods: 30 patients with breast carcinoma and liver metastasis managed at (Baghdad teaching hospital) during the period from Jan. 2005 to Jan. 2007.
Results: 16 patients showed response to chemotherapy. 20% complete response was found and 33% showed partial response 57% went into progressive disease. The duration of response lasted for less than six months in 4 patients and more than six months in two patients.
Conclusion: chemotherapy remains the mainstay of treatment of liver metastasis but new modalities of treatment add much

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
View Publication