Preferred Language
Articles
/
bRfWXJMBVTCNdQwC29Le
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

Scopus Crossref
View Publication
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Use Of Artificial Neural Networks In Developing The Role Of Auditor In Discovering Fundamental Errors: An Applied Research In General Company for Electrical Industries and Nasr General Company for Mechanical Industries
...Show More Authors

Artificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Mar 21 2019
Journal Name
J. Eng. Appl. Sci
Developing an Arabic handwritten recognition system by means of artificial neural network
...Show More Authors

The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single l

... Show More
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 10 2017
Journal Name
Journal Of Pharmaceutical, Chemical And Biological Sciences
BRCA1 is Overexpressed in Breast Cancer Cell Lines and is Negatively Regulated by E2F6 in Normal but not Cancerous Breast Cells
...Show More Authors

This study focused on the expression and regulation of BRCA1 in breast cancer cell lines compared to normal breast. BRCA1 transcript levels were assessed by real time quantitative polymerase chain reaction (RT-qPCR) in the cancer cell lines. Our data show overexpression of BRCA1 mRNA level in all the studied breast cancer cell lines: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 along with Jurkat, leukemia T-lymphocyte, the positive control, relative to normal breast tissue. To investigate whether a positive or negative correlation exists between BRCA1 and the transcription factor E2F6, three different si-RNA specific for E2F6 were used to transfect the normal and cancerous breast cell lines. Interestingly, strong negative relationship was found b

... Show More
Preview PDF
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Correlation of Toxoplasmosis Seroprevalence and Serum Level of Interleukin-10 in Iraqi Breast Cancer Women
...Show More Authors

Toxoplasmosis is regarded as one of the most important global life-threatening diseases in immune-compromised people. The intracellular protozoon Toxoplasma gondii is the causative pathogen of toxoplasmosis. Aim of this study is to investigate the possible association between T. gondii infection and breast cancer (BC) in Iraqi women, also to assess the effect of T. gondiion interleukin 10 (IL-10) of the immune response. By ELISA method, blood samples from 81 women with breast cancer and 60 apparently healthy women have been examined for presence of anti-toxoplasmaantibodies, also the levels of serum IL-10 were estimated in these subjects. Results showed that women with BC had the highest prevalence rate of toxoplasmosis. The anti- T.gondii

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jun 30 2007
Journal Name
Al-kindy College Medical Journal
Urine Cytology in Patients with Long Standing Dialysis
...Show More Authors

Background: Dialysis is in common use to treat patients
with end stage renal failure .However longstanding dialysis
harboring some cellular changes in various body fluids.
This study was conducted in order to detect these changes
in urine.
Objective: The study was conducted to detect cellular
changes in urine of patients with longstanding dialysis.
Method: Fifty-three urine samples were examined
cytologically obtained from patients with longstanding
dialysis during 6 months period. Freshly voided midstream
urine samples were taken . Samples were centrifuged and 2
to 3 drops of sediments were smeared on 2 glass slides and
fixed in 95% ethyl alcohol then stained with Hand E stain
to be evaluated.
R

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More