<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
The pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases,
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO)
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques,
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with differ
Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen
This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreAbstract
The research to have a clear perceptions about the knowledge value added to assess the knowledge resources of the Iraqi private banks, depending on the value added methodology of the proposed defined (Housel & Bell, 2001), which assumes that the knowledge value added come through synergetic relationship between knowledge resource and information technology, trying to the possibility of mainstream theory and its application in the Iraqi environment and interpretation of results, and on this basis was launched search of a research problem took root synergetic nature of the relationship between knowledge (human) resource and
... Show MoreKE Sharquie, AA Noaimi, SA Galib, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 4
The determiner phrase is a syntactic category that appears inside the noun phrase and makes it definite or indefinite or quantifies it. The present study has found wide parametric differences between the English and Arabic determiner phrases in terms of the inflectional features, the syntactic distribution of determiners and the word order of the determiner phrase itself. In English, the determiner phrase generally precedes the head noun or its premodifying adjectival phrase, with very few exceptions where some determiners may appear after the head noun. In Arabic, parts of the determiner phrase precede the head noun and parts of it must appear after the head noun or after its postmodifying adjectival phrase creating a discontinu
... Show More