<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreThe present study evaluates the effects of Ginkgo biloba extract as monotherapy on the glycemic status, insulin resistance (IR), body mass index (BMI), and visceral adiposity index (VAI), in addition to the inflammatory markers, oxidative status and leptin level in patients with metabolic syndrome in comparison with metformin.
The study is a randomized, double-blind pilot study conducted during the period May to September, 2020. Fifty patients were recruited in the study and they were allocated into two groups (25 per each group): Ginkgo biloba and Metformin groups, they received (120 mg Ginkgo biloba extract/ capsule) and (500 mg Metformin/ capsule) respectively; orally as a single dose for 90 days. Blood samples were taken at z
... Show MoreObjective: To assess the functional outcome, time to union, shoulder pain, blood loss, operative time, iatrogenic radial nerve injury, hospitalization, and infection. Methodology: It is a prospective randomized study on 30 patients with mid-shaft humerus fracture according to AO classification (1.2A1, 2, 3 and 1,2B) with functioning radial nerve. They were randomly dividing into two groups. Group A were treated by a closed antegrade interlocking nail, and group B treated by open reduction and locked compression plate fixation. The follow-up was up to 6 months, including time to union, shoulder pain, intraoperative blood loss, operative time and iatrogenic radial nerve injury. Functional outcome was assessed by quick DASH score. Resu
... Show MoreKE Sharquie, AA Noaimi, BAM Saleh, 2015
This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
In recent years , the interest in gold (III) species have gained more and more attention for cancer chemotherapy , this was stimulating by the possibility to develop new agents with mode of action and clinical profile different from the established platinum metalodrugs.
With this frame, recently new square planar Au(III) complexes (Au(L)(L')n); where L=SCH2COO- ; L'=HSCH2COO- had been synthesized with S/O – donor ligands.
In this article and by the aim to replace, one of (L') ligand by anion chloride ligand (which supposedly more relevant for the biodistribution of the compound than for its pharmacodynamic effects), new complex (Au(L')
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show More
In this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show More