<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
In this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
SMNs like Facebook, YouTube, Twitter, WhatsApp,..etc. are among the most popular sites on the Internet. These sites can provide a powerful means of sharing, organizing, finding information and knowledge. The popularity of these sites provides an opportunity to measure the use them in knowledge sharing, which needs a special scale, but unfortunately, there is no special scale for that. Thus, this study supposes to use SCT as a scale to measure the use of SMNs in electronic knowledge sharing due to it has been used to measure knowledge sharing with its traditional form. This study can help the decision-makers to use these SMNs to share the academics’ knowledge in educational institutes to the communi
... Show MoreIn our world, technological development has become inherent in all walks of life and is characterized by its speed in performance and uses. This development required the emergence of new technologies that represent a future revolution for a fourth industrial revolution in various fields, which contributed to finding many alternatives and innovative technical solutions that shortened time and space in terms of making Machines are smarter, more accurate, and faster in accomplishing the tasks intended for them, and we find the emergence of what is called artificial intelligence (artificial intelligence), which is the technology of the future, which is one of the most important outputs of the fourth industrial revolution, and artificial inte
... Show MoreThe paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreBackground: Breast cancer is the first one among Iraqi females. Most of them present later for diagnosis. Early detection center in tertiary hospital practice uses FNAB for early diagnosis. Publications on accuracy of this detection are scarce.
Objective: To test the accuracy of FNAB in breast lump diagnosis.
Methods: Diagnostic test accuracy study, on 204 women with breast lump, attending the oncology department in 2017.
Results: Fine-needle aspiration biopsy diagnosis of histologically malignant cases were, malignant in 89 (87.3%), suspicious of malignancy in 5 (4.9%), and benign in 4 (3.9%). Complete sensitivity was 87.3%, and specificity
... Show MoreFor the duration of the last few many years many improvement in computer technology, software program programming and application production had been followed with the aid of diverse engineering disciplines. Those trends are on the whole focusing on synthetic intelligence strategies. Therefore, a number of definitions are supplied, which recognition at the concept of artificial intelligence from exclusive viewpoints. This paper shows current applications of artificial intelligence (AI) that facilitate cost management in civil engineering tasks. An evaluation of the artificial intelligence in its precise partial branches is supplied. These branches or strategies contributed to the creation of a sizable group of fashions s
... Show More