<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Municipal wastewater sources are becoming increasingly important for reuse, for irrigation purposes, so they must be treated to meet environmentally friendly local or global standards. The aim of this study is to establish, calibrate, and validate a model for predicting chemical oxygen demand for the pilot plant of mobile biofilm reactors operating from municipal wastewater in Maaymyrh located in Hilla city Using the approach of dimensional analysis. The approach of Buckingham's theorem was used to derive a model of dimensional analysis design for the forecast of (COD) in the pilot plant. The effluent concentration (COD) It has been derived as a result of the influential concentration of (COD), dissolved oxygen (DO), volume of pilot plant
... Show MoreThe present work elucidates the utilization of activated carbon (AC) and activated carbon loaded with silver nanoparticles (AgNPs-AC) to remove tetracycline (TC) from synthetically polluted water. The activated carbon was prepared from tea residue and loaded with silver nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were used to characterize the activated carbon (AC) and silver nanoparticles-loaded activated carbon (AgNPs-AC). The impact of various parameters on the adsorption effectiveness of TC was examined. These variables were the initial adsorbate concentration (Co), solution acidity (pH), adsorption time (t), and dosag
... Show MoreThe research aims to reach a set of objectives concerning creation a clear vision about conceptual, philosophical and practical dimension of relations, and effects between knowledge management, costumer orientation and competitiveness to construct a framework of a pragmatic model as a solution to research problem and its questions which the main one is about the role of knowledge management and costumer orientation in competitiveness of business organizations. To achieving this goal, it was necessary to make, in priory, a review and discussion to the theoretical dimension of research variables to have a clear vision about constructing hypostatical research model implying a set of hypotheses which, by proving them in companies studied, repr
... Show MoreThe problem of the study and its significance:
Due to the increasing pressures of life continually, and constant quest behind materialism necessary and frustrations that confront us daily in general, the greater the emergence of a number of cases of disease organic roots psychological causing them because of severity of a lack of response to conventional treatments (drugs), and this is creating in patients a number of emotional disorders resulting from concern the risk of disease
That is interested psychologists and doctors searchin
... Show MoreWith the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreImage Fusion Using A Convolutional Neural Network
To determine the potential of gingival crevicular fluid (GCF) volume, E‐cadherin and total antioxidant capacity (TAC) levels to predict the outcomes of nonsurgical periodontal therapy (NSPT) for periodontitis patients.
NSPT is the gold‐standard treatment for periodontal pockets < 6 mm in depth, however, successful outcomes are not always guaranteed due to several factors. Periodontitis‐associated tissue destruction is evidenced by the increased level of soluble E‐cadherin and reduced antioxidants in oral fluids which could be used as predictors for success/failure of N
The aims of the present study are to evaluate the levels of CA19-9 in sera and tissues' homogenate of breast and thyroid benign patients in order to assess its use as an early diagnostic parameter in differentiation between malignant and benign cases. The study was conducted on 8 patients with breast benign tumor and 8 patients with thyroid benign tumor, by the enzyme linked immunosorbent assay (ELISA) technique. The results of CA19-9 levels in sera were (15 ±1.58 and 10.67 ±2.08)U/ml respectively compared with serum CA19-9 levels of control group which was 7.74 ±4.92 U/ml, the results were found to be highly significantly in breast tumor patients and non significantly in thyroid
... Show More