Clobetasol propionate (CP) is a super potent corticosteroid widely used to treat various skin disorders such as atopic dermatitis and psoriasis. However, its utility for topical application is hampered due to its common side effects, such as skin atrophy, steroidal acne, hypopigmentation, and allergic contact dermatitis. Microsponge is a unique three-dimensional microstructure particle with micro and nano-meters-wide cavities, which can encapsulate both hydrophilic and lipophilic drugs providing increased efficacy and safety. The aim of the current study is to prepare and optimize clobetasol-loaded microsponges. The emulsion solvent diffusion method is used for the preparation of ethylcellulose (EC)-based microsponges. The impact of various formulation variables on microsponge's properties includes; drug: polymer ratio, polyvinyl alcohol (PVA) quantities, the volume of external phase, and stirring rates investigated. The microsponges were characterized in terms of particle size, product yield, CP entrapment %, and in-vitro drug release behavior. The results report that increasing EC concentration led to a significant increase in particle size, with a decrease in product yield and drug entrapment %. Increasing stirring speed or external aqueous volume or PVA w/v % caused a non-significant decrease in production yield and CP entrapment % but showed a significant decrease, and increase in particle size, respectively. Finally, it was concluded that the ability to use ethylcellous as a Msg polymer matrix to prepare uniform, highly porous particles was confirmed by microscope observation and compatibility with CP.
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreTelevision white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThe UN organization is considered one of the most important organizations at the international level. It has accomplished multiple tasks and roles of many different issues and events that hit the developing and advanced world countries. It has performed a series of procedures and laws that have had an impact on ending the wars and conflicts that plagued some countries and continued for a period of time in the past. Moreover, it has improved the level of the international relations between a number of countries due to the problems and incidents took place between them. It has relied on finding solutions and treatments for humanitarian problems such as the preservation of the environment, preventing the spread of epidemics and diseases Thi
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show More