A green and low-cost method was used to prepare graphene oxide (GO) and reduced graphene oxide (rGO) by chemical exfoliation of graphite powder by modified Hummers method, followed by reduction using ascorbic acid. X-ray diffractometry (XRD) and field emission scanning electron microscopy (FE-SEM) were used to analyze the structure and morphology of the synthesized materials. Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy were used to identify the formation of the GO and rGO
Objective: To evaluate the functional outcomes after extended curettage and reconstruction using a combination of bone graft and bone cement (sandwich). Methodology: In this prospective case series 16 skeletally mature patients with primary giant cell tumor around the knee were included. Patients with previous surgically treated, malignant transformation, degenerative knee changes and those presenting with pathological fracture were excluded. The tumor was excised with bone graft filling space beneath the articular cartilage and a block of gel foam was placed over the cortical surface of picked bone graft. Remaining cavity was filled with polymethylmethacrylate cement (sandwich) with or without internal fixation. The func tional evaluation
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreThe Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretatio
In this work ,porous silicon(PS) substrate has been used to fabricate a sensor of structures(Al/n PSi/n-Si/Al) using infrared laser in a assisting Etching process at several times (8,16,and24 min) and current density(J) of about(25mA/cm2) on silicon(Si) substrates type of n and tested for CO2 gas molecules and then modulated using MATLAB program. J-V characteristic was analyzed. Different parameter determine such as, Porosity (%), Layer thickness (%) and relative permittivity of the fabricated PS substrate. Several shape and sizes of pores were obtained from the scanning electron microscope device such as pore, rectangular and cylindrical structure for infrared illuminated (IR). The Porosity (%) and Layer thickness (%) take control on se
... Show MoreThe present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show MoreSingle-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show More