Pure Cu (CZTSe) and Ag dopant CZTSe (CAZTSe) thin films with Ag content of 0.1 and 0.2 were fabricated on coring glass substrate at R.T with thickness of 800nm by thermal evaporation method. Comparison between the optical characteristics of pure Cu and Ag alloying thin films was done by measuring and analyzing the absorbance and transmittance spectra in the range of (400-1100)nm. Also, the effect of annealing temperature at 373K and 473K on these characteristics was studied. The results indicated that all films had high absorbance and low transmittance in visible region, and the direct bang gap of films decreases with increasing Ag content and annealing temperature. Optical parameters like extinction coefficientrefractive index, and
... Show MorePolyaniline organic Semiconductor polymer thin films have been prepared by oxidative polymerization at room temperature, this polymer was deposited on glass substrate with thickness 900nm, FTIR spectra was tested , the structural,optical and electrical properties were studied through XRD ,UV-Vis ,IR measurements ,the results was appeared that polymer thin film sensing to NH3 gas.
In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreThe paper discusses the structural and optical properties of In 2 O 3 and In 2 O 3-SnO 2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In 2 O 3 where increased after loading SnO 2 , this addition is a challenge in gas sensing application. Sensitivity of In 2 O 3 thin film against NO 2 toxic gas is 35% at 300 o C. Sensing properties were improved after adding Tin Oxi
... Show MoreFor the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show More