In recent years, the number of applications utilizing mobile wireless sensor networks (WSNs) has increased, with the intent of localization for the purposes of monitoring and obtaining data from hazardous areas. Location of the event is very critical in WSN, as sensing data is almost meaningless without the location information. In this paper, two Monte Carlo based localization schemes termed MCL and MSL* are studied. MCL obtains its location through anchor nodes whereas MSL* uses both anchor nodes and normal nodes. The use of normal nodes would increase accuracy and reduce dependency on anchor nodes, but increases communication costs. For this reason, we introduce a new approach called low communication cost schemes to reduce communication cost. Unlike MSL* which chooses all normal nodes found in the neighbor, the proposed scheme uses set theory to only select intersected nodes. To evaluate our method, we simulate in our proposed scheme the use of the same MSL* settings and simulators. From the simulation, we find out that our proposed scheme is able to reduce communication cost—the number of messages sent—by a minimum of 0.02 and a maximum of 0.30 with an average of 0.18, for varying node densities from 6 to 20, while nonetheless able to retain similar MSL* accuracy rates.
This article is part of the bigger project of my PhD thesis which investigates the influence of the British war poetry of the twentieth century on the development of Iraqi poetry in the century/Plymouth University/UK. The article examines the influences of British poetry on the development of the forms of poetry in Iraq after the Second World War. The aim is to shed the light on the creation of the ‘third product’ or the Iraqi poetry that shows the influences of the translated British poetry or the ‘second product’; which was written in prose for it is almost impossible to transfer the rhyme and rhythm of poetry from one language to another. Those who translated the poetry where also the pioneers of the major formal revolution in Ar
... Show MoreCoaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreThis study aimed to recognize and understand the concept of strategic management accounting (SMA) and how it's the effect on the competitive advantage for industrial companies in Jordan. The study's importance arises due to the lack of Arab studies that dealt with this topic, in addition to the important and vital role of strategic management accounting on companies that represent the artery of the decision-making process, and to identify the benefits associated with SMA technology. The necessary data were collected through the literature review and theoretical study of the references that relevant to the study subject, in addition to a questionnaire developed for this purpose, the study used (124) out of (250) questionnaires tha
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
ان السبب الرئيسي لاختيار الموضوع كونه من الاساليب الادارية الحديثة التي تهدف الى انجاح المنظمة او الشركة المبحوثة, اذ تمثلت مشكلة البحث في ما دور الادارة بالرؤية المشتركة في تعزيز التسويق الابداعي بالشركة المبحوثة, يهدف البحث الى تسليط الضوء على مفهوم الادارة بالرؤية المشتركة وانعكاساتها على التسويق الابداعي للمنظمة ، باعتبارها منهج اداري حديث يسهم في تغيير وتجديد وتطوير واقع المنظمة المبحوثة( الشرك
... Show MoreReceipt date:2/17/2021 acceptance date:3/16/2021 Publishing date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
Objective: This paper investigates the contradictions in the decision-making process of the United States, which historically proven to be successful policies in the short term, but in the long term proven to be wanting and failure. Methodology: The paper uses descriptive, historical, comparative method. A
... Show More