Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations after the stimulation job. The measurements were made under shut-in and three choke sizes (60/64”, 46/64” and 32/64”) flowing conditions. Overall, the data quality is acceptable to generate a good analysis. From the flowing surveys, it was observed that just the intervals 2250-2285 m and 2335-2375 m are contributing to the total well production while the well was flowing through the chokes 60/64” and 46/64”. However, most production is coming from the interval 2250-2285 m for each choke. The flow profile changed with the 32/64”, the interval 2250-2285 remained producing but the interval 2335-2375 m started receiving fluid from the upper interval. This cross flow increased after the well was shut in. The temperature log shows a normal behavior while the well is flowing through the 60/64” and 46/64” chokes, but changes as result of the cross flow with the 32/64” choke and with the well shut in. From the capacitance readings and pseudo fluid density (density from differential pressure) only oil is being produced, and there is a static water column at the sump.
A lab-scale packed Bio film reactor was used for ethanol production by fermentation of sugar solution using a local
isolated yeast saccharomyces cerevisia and glutaraldelryde on gelating as a covalent bounding agent. In this study four
types of packing in the reactor were used. They are; polypropylene mesh, glass rashig rings, ceramic rashig rings and
glass beads. Glucose solutions were used as substrate with four concentrations; (5, I 0, I 5, 20 g/l). Results show that the
ethanol productivity was increase with increasing sugar concentration. Also it was found that polypropylene mesh
packing give the highest productivity while glass beads gives the lowest productivity. The experiments were conducted at
three temperatur
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreBiodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreExperimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test
... Show MoreA new laboratory study conducted on stepped spillways in order to investigate their efficiency of dissipating flow energy. All previous study on stepped spillway indicated that the flow energy dissipation decreased as increasing in discharge. Increasing in the step numbers and the spillway slope led to energy dissipation decrease. In this study, an experimental attempt to increase energy dissipation at variable discharges was performed on stepped spillway and that leads to decreasing the cost of initiating the stilling basin or may be ignoring it. Five spillways were constructed from concrete and tested to investigate and compare among them. Three were roughed by gravel with different size for each one, one of them was s
... Show MoreObjectives: The study aims to identify the quality of life level in schizophrenic patients and to find out the
relationships between the quality of life and some of personal characteristics for those patients with
schizophrenia.
Methodology: A descriptive correlation analytic design was used by using the assessment technique on sample
of 100 schizophrenic outpatients, who were selected purposively (non-probability sample) during the period
10/ 3/2013 - 1/ 12 /2013. The study was conducted on the schizophrenic patients in an out patient psychiatric
clinics at Ibn-Rushd; and Al-Rashad Psychiatric Teaching Hospital; Baghdad Teaching Hospital, and Al-Kadhimya
Teaching Hospital. Self administrative questionnaire was used
Background. Endodontic infections caused by remaining biofilm following disinfection with chemical fluids encourage secondary bacterial infection; hence, employing laser pulses to activate the fluids is advised to improve microbial biofilm clearance. This study investigated the performance of Er,Cr:YSGG laser in photon-induced photoacoustic streaming (PIPS) agitation of 5.25% sodium hypochlorite (NaOCl) to enhance the removal of mature Enterococcus faecalis (E. faecalis) biofilms in complex root canal systems. Methods. The mesial roots of the lower first and second molars were separated and inoculated with E. faecalis bacteria for 30 days. The roots were irrigated with 5.25% NaOCl, some of them were agitated with passive ultrasonic
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreMany approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, this issue has been approached through the formulation of drugs as nanocrystals. Nanocrystals consist of pure drug(s) and a minimum of surface active agent(s) required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size typically in the range of 200 - 500 nm. By reducing particle size to nanoscale, the surface area available for dissolution is increased, and thus bioavailability is enhanced. Drug nanocrystals constitute a versatile formulation approach to enhance the pharmacokinetic and pharmacodynamic properties of poorly
... Show More