Preferred Language
Articles
/
bRb1HocBVTCNdQwCXThA
Diagnosing Complex Flow Characteristics of Mishrif Formation in Stimulated Well Using Production Logging Tool
...Show More Authors

Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations after the stimulation job. The measurements were made under shut-in and three choke sizes (60/64”, 46/64” and 32/64”) flowing conditions. Overall, the data quality is acceptable to generate a good analysis. From the flowing surveys, it was observed that just the intervals 2250-2285 m and 2335-2375 m are contributing to the total well production while the well was flowing through the chokes 60/64” and 46/64”. However, most production is coming from the interval 2250-2285 m for each choke. The flow profile changed with the 32/64”, the interval 2250-2285 remained producing but the interval 2335-2375 m started receiving fluid from the upper interval. This cross flow increased after the well was shut in. The temperature log shows a normal behavior while the well is flowing through the 60/64” and 46/64” chokes, but changes as result of the cross flow with the 32/64” choke and with the well shut in. From the capacitance readings and pseudo fluid density (density from differential pressure) only oil is being produced, and there is a static water column at the sump.

Publication Date
Wed Jul 06 2022
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression using Polynomial Coding Techniques: A review
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Aug 05 2016
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Image Encryption Using Modified AES with Bio-Chaotic
...Show More Authors

Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.

View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Image Compression Using 3-D Two-Level Technique
...Show More Authors

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Intelligent Systems And Computing
Forecasting by Using the Optimal Time Series Method
...Show More Authors

View Publication
Scopus (19)
Crossref (10)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Nonparametric Regression Function Using Canonical Kernel
...Show More Authors

    This research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel  and give the sound amount of smoothing .

We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Innovative Systems Design And Engineering
Automated Surface Defect Detection using Area Scan Camera
...Show More Authors

Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Decoding Reed- Muller Codes by Using Hadamard Matrices
...Show More Authors

This paper discusses the problem of decoding codeword in Reed- Muller Codes. We will use the Hadamard matrices as a method to decode codeword in Reed- Muller codes.In addition Reed- Muller Codes are defined and encoding matrices are discussed. Finally, a method of decoding is explained and an example is given to clarify this method, as well as, this method is compared with the classical method which is called Hamming distance.

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref