This research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highest shear stress and yield point than the others polymers, but Xanthan has the highest effect on plastic viscosity than other polymers. All polymers reduce filtration loss. The polymer solution mud failed to suspend the barite so we cannot use it as drilling fluid even so this mud has good Rheological properties (PV and YP). The maximum amount of each polymer is founded for the studied clay types.
Field experiment conducted to measured Slippage, Effective field capacity, Field Efficiency, Soil Volume Disturbed and Specific Productivity Tillage in silt clay loam soil with depth 18 cm in Baghdad- Iraq. Split – split plot design under randomized complete block design with three replications using Least Significant Design 5 % was used. Three factor used in this experiment included Two types of plows included Chisel and Disk plows which represented main plot , Three Tires Inflation Pressure was second factor included 1.1 ,1.8 and 2.7 Bar, and Three forward speeds of the tillage was third factor included 2.35 , 4.25 and 6.50 km/hr. Result show chisel plow recorded best parameters performance
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreProfessional learning societies (PLS) are a systematic method for improving teaching and learning performance through designing and building professional learning societies. This leads to overcoming a culture of isolation and fragmenting the work of educational supervisors. Many studies show that constructing and developing strong professional learning societies - focused on improving education, curriculum and evaluation will lead to increased cooperation and participation of educational supervisors and teachers, as well as increases the application of effective educational practices in the classroom.
The roles of the educational supervisor to ensure the best and optimal implementation and activation of professional learning soci
... Show MoreWeb testing is very important method for users and developers because it gives the ability to detect errors in applications and check their quality to perform services to users performance abilities, user interface, security and other different types of web testing that may occur in web application. This paper focuses on a major branch of the performance testing, which is called the load testing. Load testing depends on an important elements called request time and response time. From these elements, it can be decided if the performance time of a web application is good or not. In the experimental results, the load testing applied on the website (http://ihcoedu.uobaghdad.edu.iq) the main home page and all the science departments pages. In t
... Show MoreThis study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show More