(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions have been noticed. Analytical data showed that all the complexes out to 1:2 metal-ligand ratio. At the radix for physicochemical datum an octahedral structure have been described at compounds. other than the biological studies of all produced compounds was evaluation against different kinds of antimicrobial strains.
In this paper, a mathematical model for the oxidative desulfurization of kerosene had been developed. The mathematical model and simulation process is a very important process due to it provides a better understanding of a real process. The mathematical model in this study was based on experimental results which were taken from literature to calculate the optimal kinetic parameters where simulation and optimization were conducted using gPROMS software. The optimal kinetic parameters were Activation energy 18.63958 kJ/mol, Pre-exponential factor 2201.34 (wt)-0.76636. min-1 and the reaction order 1.76636. These optimal kinetic parameters were used to find the optimal reaction conditions which
... Show MorePurpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show MorePurpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and t
... Show MoreIn this study, performance characteristics such as power take off (PTO) power consumption, fuel consumption, fuel consumption for the unit field-unit product were determined at different working speeds with two different PTO applications (540 and 540E) in a single row disc type silage machine. In particular, the 540E PTO application greatly reduces fuel consumption for unit work. The best results in terms of hourly fuel consumption were achieved in 540E PTO application and V1 working speed. When the field - product fuel consumption is evaluated, the best results were obtained with the 540E PTO application at the V3 working speed. When an evaluation is made considering all the parameters, it is concluded that the 540E PTO application will p
... Show MoreThis research aims to investigate the effect of four types of nanomaterial on the Marshall properties and durability of warm mix asphalt (WMA). These types are; nano silica(NS), nano carbonate calcium (NCC), nano clay(NC), and nanoplatelets (NP). For each type of Nanomaterial, three contents are tried as following; NS(1%, 3%, and 5%), NCC(2%, 4%, and 6%), NC(3%, 5%, and 7%), and NP (2%, 4%, and 6%) by weight of asphalt cement. Following Marhsall mix design method, the optimum asphalt cement content is determined, thereafter the optimum dosage for each nanomaterial is obtained based on the highest Marshall stability value. The durability of the control mix (no nanomaterial) and modified mixtures have been compared based on moisture damage, r
... Show MoreThe aim of this work was directed to measure the cosmic ray (CR)
flux and the background (BG) absorbed dose rate for districts of
Baghdad city. The maximum values of CR flux was 2.01
(particle/cm2.s) registered for several Baghdad districts and the
minimum was 0.403 (particle/cm2.s) belonging to Al-kadhimiya
district, whereas the overall average value was 1.24 (particle/cm2.s).
The BG measurements showed that the maximum absorbed dose was
25 nSv/h belonging to Noab AL-Dhbat district and the minimum
absorbed was 19.01 nSv/h observed in Al-Ghadeer district, while
the overall average was 22.56 nSv/h, and this value is small than the
Iraqi permissible limit, which is restricted by Iraqi Center of
Radiation Pr