We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
Four molecular imprinted polymer (MIP) membranes for Mebeverine.HCl (MBV.HCl) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) as monomer, pentaerythritoltriacrylate (PETRA) as a cross linker ,benzoyl peroxide (BPO) as an initiator and mebeverine as a template. Four different types of plasticizers of different viscosities were used and the electrodes were fully characterized in terms of plasticizer type, response time, lifetime, pH and detection limit.
The MBV-MIP electrodes exhibited Nernstian response in concentration range from 1.0×10-6 to1.0×10-1 M with slopes of 13.98, 19.60, -20.43 and 19.01 mV/ decade. The detection limit and qua
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreOntology is a system for classifying human knowledge according to its objective characteristics and hierarchical relations through building clusters or that bear common characteristics. In digital environments, it is a mechanism that helps regulate a vast amount of information by achieving a complete link between sub-thematic concepts and their main assets. The purpose of this study is to survey the previously conducted studies that use ontology in organizing digital data on social networking sites, such as the search engines Yahoo, Google, and social networks as Facebook and their findings. Results have shown that all these studies invest ontology for the purpose of organizing digital content data, especially on
... Show MoreUranium concentrations in soil were determined for ten locations in Salahdin governorate using CR-39 track detector, fission fragments track technique was used, the nuclear reaction of nuclear fission fragments obtained by the bombardment of 235U with thermal neutrons from (Am-Be) neutron source with flux (5000n.cm-2.s-1), the concentration values were calculated by a comparison with standard samples. The results of the measurements show that the uranium concentration in soil samples various from 0.42±0.018ppm in Beji province to 0.2±0.014 ppm in Tooz province with an average (0.31±0.08ppm), the values of uranium concentration in all samples are within the permissible limits universally.
Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreTo ascertain the stability or instability of time series, three versions of the model proposed by Dickie-Voller were used in this paper. The aim of this study is to explain the extent of the impact of some economic variables such as the supply of money, gross domestic product, national income, after reaching the stability of these variables. The results show that the variable money supply, the GDP variable, and the exchange rate variable were all stable at the level of the first difference in the time series. This means that the series is an integrated first-class series. Hence, the gross fixed capital formation variable, the variable national income, and the variable interest rate
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Visceral Leishmaniasis (VL) is a disseminated protozoan infection caused by Leishmania donovani parasites which affects almost half a million persons annually. Classical diagnosis methods of VL still not very sensitive and time consuming. In this study, we reported the success of polymerase chain reaction (PCR) method to identify L. donovani based on kinetoplast deoxyribonucleic acid (kDNA) for the diagnosis of the parasite using in vitro promastigote cultures. LdI species - specific primer was used to identify L. donovani and the result showed a single band of about ~600bp. It can be recommended that this primer is to be used for detection the visceral L. donovani.