We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThis effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, bauxite,
... Show MoreThis study appears GIS techniqueand remote sensing data are matching with the field observation to identify the structural features such as fault segments in the urban area such as the Merawa and Shaqlawa Cities. The use of different types of data such as fault systems, drainage patterns (previously mapped), lineament, and lithological contacts with spatial resolution of 30m was combined through a process of integration and index overlay modeling technique for producing the susceptibility map of fault segments in the study area. GIS spatial overlay technique was used to determine the spatial relationships of all the criteria (factors) and subcriteria (classes) within layers (maps) to classify and map the potential ar
... Show MoreA newly developed analytical method was conducted for the determination of Ketotifen fumarate (KTF) in pharmaceuticals drugs via quenching of continuous fluorescence of 9(10H)-Acridone (ACD). The method was applied using flow injection system of a new homemade ISNAG fluorimeter with fluorescence measurements at ± 90◦ via 2×4 solar cell. The calibration graph was linear in the range of 1-45 mmol/L, with correlation coefficient r = 0.9762 and the limit of detection 29.785 µg/sample from the stepwise dilution for the minimum concentration in the linear dynamic ranged of the calibration graph. The method was successfully applied to the determination of Ketotifen fumarate in two different pharma
... Show MoreThis study investigates the changes occurring in the province of Basra using geospatial methods and analyzes the variations in land surface temperature among the various types of land cover. For the months of July and December in the years 2013 and 2021, Landsat images were used in Landsat 8 OLI/TIRS, and satellite images were processed using ArcGIS 10.8 software. The study's categories for land use and land cover were generated through the application of supervised classification techniques, and the land surface temperature was calculated using data from a satellite sensor's brightness temperature. According to the study's findings, there has been an increase in urban areas (including barren land). From 2013 to 2021, a greater correlati
... Show More Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because
The normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t
... Show More