We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
In this paper, we study and investigate the quark anti-quark interaction mechanism through the annihilation process. The production of photons in association with interaction quark and gluon in the annihilation process. We investigate the effect of critical temperature, strength coupling and photons energy in terms of the quantum chromodynamics model theory framework. We find that the use of large critical temperature Tc =134 allows us to dramatically increase the strength coupling of quarks interaction. Its sensitivity to decreasing in photons rate with respect to strength coupling estimates. We also discuss the effect of photons energy on the rate of the photon , such as energies in range (1.5 to 5 GeV).The photons rate increases
... Show MoreThis work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
Background: Tooth eruption is a localized process in the jaws which exhibits precise timing and bilateral symmetry. Develop within the jaws and their eruption is a complex infancy process during which they move through bone to their functional positions within the oral cavity. For species with more than one set of teeth, eruption of the second set also accomplishes. The key to the successful clinical management of tooth eruption consists of understanding that this process consists largely of the local regulation of alveolar bone metabolism to produce bone resorption in the direction of eruption and shift and formation of bone at the opposite side.The amniotic sac contains a considerable quantity of stem cells. These amniotic stem cells are
... Show MoreThe aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreIn this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad. One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.
The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a
... Show MoreDrilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud Prepa
... Show MoreThe radial wavefunctions of transformed harmonic-oscillator in the local scale transformation technique are used to calculate the root-mean square proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors of stable (10,11B) and (unstable) exotic (8,14,17B) Boron isotopes. For 10B and 11B, the transformed harmonic-oscillator wavefunctions are applied to all subshells in no-core shell model approach using wbp interaction. For 8,14,17B, the radial wavefunctions of harmonic-oscillator and THO are used to calculate the aforementioned quantities for the core and halo parts, respectively. The calculate
... Show MoreBackground: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.
The research aims to evaluate the radioactivity in elected samples of cereals and legume which are wide human consumption in Iraq using Nuclear Track Detectors (NTDs) model CN-85.
The samples were prepared scientifically according to references in this field. After 150 days of exposure, the detector were collected and chemically treated according to scientific sources (etching chemical), nuclear effects have been calculated using the optical microscope.
Radon (222Rn) concentration and uranium (238U) were calculated in unit Bq/m3 and (ppm), the results indicate that the highest concentration of radon and uranium was in yellow corn where the concentration of radon was 137.17×102 Bq/m3 and uranium concentration 2.63 (ppm). The lowest
This study is a try to compare between the traditional Schwarzschild’s radius and the equation of Schwarzschild’s radius including the photon’s wavelength that is suggested by Kanarev for black holes to correct the error in the calculation of the gravitational radius where the wavelengths of the electromagnetic radiation will be in our calculation. By using the different wavelengths; from radio waves to gamma ray for arbitrary black holes (ordinary and supermassive).