We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreIn this paper, the generation of a chaotic carrier by Lorenz model
is theoretically studied. The encoding techniques has been used is
chaos masking of sinusoidal signal (massage), an optical chaotic
communications system for different receiver configurations is
evaluated. It is proved that chaotic carriers allow the successful
encoding and decoding of messages. Focusing on the effect of
changing the initial conditions of the states of our dynamical system
e.i changing the values (x, y, z, x1, y1, and z1).
To maintain the security and integrity of data, with the growth of the Internet and the increasing prevalence of transmission channels, it is necessary to strengthen security and develop several algorithms. The substitution scheme is the Playfair cipher. The traditional Playfair scheme uses a small 5*5 matrix containing only uppercase letters, making it vulnerable to hackers and cryptanalysis. In this study, a new encryption and decryption approach is proposed to enhance the resistance of the Playfair cipher. For this purpose, the development of symmetric cryptography based on shared secrets is desired. The proposed Playfair method uses a 5*5 keyword matrix for English and a 6*6 keyword matrix for Arabic to encrypt the alphabets of
... Show MoreIn this paper, we introduce a DCT based steganographic method for gray scale images. The embedding approach is designed to reach efficient tradeoff among the three conflicting goals; maximizing the amount of hidden message, minimizing distortion between the cover image and stego-image,and maximizing the robustness of embedding. The main idea of the method is to create a safe embedding area in the middle and high frequency region of the DCT domain using a magnitude modulation technique. The magnitude modulation is applied using uniform quantization with magnitude Adder/Subtractor modules. The conducted test results indicated that the proposed method satisfy high capacity, high preservation of perceptual and statistical properties of the steg
... Show More