We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
In the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreThe laboratory experiment was conducted in the laboratories of the Musayyib Bridge Company for Molecular Analyzes in the year 2021-2022 to study the molecular analysis of the inbreed lines and their hybrids F1 to estimate the genetic variation at the level of DNA shown by the selected pure inbreed lines and the resulting hybrids F1 of the flowering gene. Five pure inbreed lines of maize were selected (ZA17WR) Late, ZM74, Late, ZM19, Early ZM49WZ (Zi17WZ, Late, ZM49W3E) and their resulting hybrids, according to the study objective, from fifteen different inbreed lines with flowering time. The five inbreed lines were planted for four seasons (spring and fall 2019) and (spring and fall 2
Multi-spectral satellite images of the Landsat satellite by the tow sensitive Thematic Mapper (TM) and Thematic Mapper Enhancement (ETM+), which covered the study area located south east of Iraq. In this research; used the sixth thermal spectral band (Thermal Band) for study the water cover in the Al-Razzaza Lake located within the province of Karbala. We intended to study the cover a case of the study area, used satellite images showing the status of region during the period from 1990 to 2001 and 2007. From this study we conclude that cover the water of the study area change in sequence case to decrease during these years.
LandSat Satellite ETM+ image have been analyzed to detect the different depths of regions inside the Tigris river in order to detect the regions that need to remove sedimentation in Baghdad in Iraq Country. The scene consisted of six bands (without the thermal band), It was captured in March ٢٠٠١. The variance in depth is determined by applying the rationing technique on the bands ٣ and ٥. GIS ٩. ١ program is used to apply the rationing technique and determined the results.
Laser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More<span>Blood donation is the main source of blood resources in the blood banks which is required in the hospitals for everyday operations and blood compensation for the patients. In special cases, the patients require fresh blood for compensation such as in the case of major operations and similar situations. Moreover, plasma transfusions are vital in the current pandemic of coronavirus disease (COVID-19). In this paper, we have proposed a donation system that manages the appointments between the donors and the patient in the case of fresh blood donation is required. The website is designed using the Bootstrap technology to provide suitable access using the PC or the smart phones web browser. The website contains large database
... Show MoreMost vegetation’s are Land cover (LC) for the globe, and there is an increased attention to plants since they represent an element of balance to natural ecology and maintain the natural balance of rapid changes due to systematic and random human uses, including the subject of the current study (Bassia eriophora ) Which represent an essential part of the United Nations system for land cover classification (LCCS), developed by the World Food Organization (FAO) and the world Organization for environmental program (UNEP), to observe basic environmental elements with modern techniques. Although this plant is distributed all over Iraq, we found that this plant exists primarily in the middle
... Show More