We consider the problem of calibrating range measurements of a Light Detection and Ranging (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent, measurement error. We solved the calibration problem without using additional hardware, but rather exploiting assumptions on the environment surrounding the sensor during the calibration procedure. More specifically we consider the assumption of calibrating the sensor by placing it in an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that moving the distance sensor within this environment implies that its measurements should be such that the relative distances and angles among the fixed points above remain the same. We thus exploit this intuition to cast the sensor calibration problem as making its measurements comply with this assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibration procedure does thus not need to use additional (typically expensive) equipment, nor deploy special hardware. As for the proposed estimation strategies, from a mathematical perspective we consider models that lead to analytically solvable equations, so to enable deployment in embedded systems. Besides proposing the estimators we moreover analyze their statistical performance both in simulation and with field tests. We report the dependency of the MSE performance of the calibration procedure as a function of the sensor noise levels, and observe that in field tests the approach can lead to a tenfold improvement in the accuracy of the raw measurements.
The robot arm is the most popular robotic form used in industry. Thus, it is crucial to make a system programming which could controlled the movement of each part in the industrial robot to make it works properly. One of the simplest models of the robot arm is EDARM ED-7100 which has a controller to control the movement of the robot arm manually. In this study, the robot controller has been redesigned in order to improve this robot's function. The new controller system used AT89S52 microcontroller which has wire connected to the robot hand. A function has been added with this controller to improve the system of controlling and becomes better than the previous system (only manually). The functions of the new system include three mo
... Show MoreIn all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO
The microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m). It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.
The weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity.
Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show Morehe assignment model represents a mathematical model that aims at expressing an important problem facing enterprises and companies in the public and private sectors, which are characterized by ensuring their activities, in order to take the appropriate decision to get the best allocation of tasks for machines or jobs or workers on the machines that he owns in order to increase profits or reduce costs and time As this model is called multi-objective assignment because it takes into account the factors of time and cost together and hence we have two goals for the assignment problem, so it is not possible to solve by the usual methods and has been resorted to the use of multiple programming The objectives were to solve the problem of
... Show More