In this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the optical band gap for (CdO) decreasing after irradiation with gamma ray from(2.4, 2.35, 2.25)eV with increasing time irradiated, while extinction coefficient, refraction index,the optical conductivity increase after irradiated with gamma ray with increase irradiation time . Cs137 is used to obtain Gamma ray with energy( 662)KeV, activity( 4.3)ci , the irradiation time (1-3)week
Extraction and preparation of red organic dye from beetroot plant in different concentrations by using the solvent extraction process. Ethanol was the solvent used to prepare five different concentrations at the ratio of (Dye: Ethanol) abbreviated (D: E) 5:0,4:1, 3:2, 2:3,1:4. The optical, structural, and morphological properties are studied for the samples. The results appeared using the UV-Vis spectroscope the maximum peak of absorption (A) spectrum at wavelength Aλmax=480 nm when the transmittance (T) at the same wavelength 25% and the reflectivity 0.8%. Florescent (F) spectrum of beetroot dye is measured at wavelength Fλmax=535nm achieved to redshift about Δλ=55 nm. Also, measured the energy band gap
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
This work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreThis research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show MoreIn this research, the mechanical properties of natural rubber blends in different proportions (70:30, 85:15, 100: 0 55:45 and phr) was studied through the use of two types of fillers (carbon black and titanium dioxide Nano) which show through tests conducted on the prepared models that increase fillers content which leads to improve the tensile properties (tensile strength, elastic modulus, elongation, hardness and compressibility). As shown by the results that the presence of polypropylene (PP) in the mix combination works to reduce the degree of intumescent and increase its content in the composition of mixtures which leads to get a great resistance to chemicals (acids, bases and oils).
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
In this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra