In this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the optical band gap for (CdO) decreasing after irradiation with gamma ray from(2.4, 2.35, 2.25)eV with increasing time irradiated, while extinction coefficient, refraction index,the optical conductivity increase after irradiated with gamma ray with increase irradiation time . Cs137 is used to obtain Gamma ray with energy( 662)KeV, activity( 4.3)ci , the irradiation time (1-3)week
Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
Lead-free ferroelectric nano ceramics of BaZrxTi1-xO3 (x=0.1, 0.2 and 0.3) were prepared by means of microwave assisted chemical route. The structural, dielectric and electrical properties were examined. The crystalline structure of the specimens was studied by X-ray diffraction patterns. All the samples showed pure single phase of perovskite structure with space group of I4/mcm. X-ray diffraction data illustrated that there is no secondary phases exist. Structural and electrical properties of barium titanate ceramics are influenced significantly by small additions of Zr. The electrical conductivity showed higher values at x=0.2 and decreased at higher Zr content. The Hall charge mobility is found
... Show MoreThe photoconductivity and its dependence on light intensity have been investigated in a-Ge20Se80 thin films as a function of temperature between (293–323)K. The result showed that the photoconductivity and photosensitivity increase with increase of annealing temperature. This behavior is interpreted in terms of the dispersive diffusion –controlled recombination of localized electrons and holes.
Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreIn this work, the effects of x-value on electrical and optical properties was studied for the two dimensional (2D)GaAs1-xPxstructure by applying the density functional theory.We found that the gallium arsenide(GaAs) and gallium phosphide(GaP) monolayers are bound to each other, while the charge transfer between these two materialsleads to tuning the band gap value between 1.5 eV for GaAs to 2.24 eV for GaP. The density of state, band structure, and optical properties are investigated in this paper.
Cerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreBackground: Wound healing is a complicated, interactive, integrative process involving cellular and chemotactic activity, the release of chemical mediators and associated vascular response which includes number of phases: inflammatory phase, proliferative phase and remodeling phase. Low level laser therapy can be more effective in the three overlapping phases of wound healing. Biostimulation appears to have an effect on the cellular level, by increasing cellular function and stimulating various cells. The aim of present study was to evaluate histologically the effect of 780-805 diode laser the intensity of inflammation and pattern of epithelization in mice model. Material and methods: The experimental study was performed on ninety six white
... Show MoreAn idea of a colored glaze is presented in this study to hide and dispose all the obstacles of using solar systems as facades integrated with buildings. This aim is achieved by designing multilayer optical interference filters by using Mat lab program . Appropriate dielectric materials, namely NdF3 of high refractive index (nH =1.6) and ThF4 of low refractive index (nL =1.5143) were employed. Quarter wave thicknesses of high (H) and low (L) refractive index were deposited on a microscopic slide substrate with n=1.513 and 550 nm design wavelength (l°). Two optical models were designed, which are Air//HL//glass and Air//LH//glass, for even numbers of layers (2-32 lay
... Show More