Preferred Language
Articles
/
bIZro4YBIXToZYALj5tT
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parameters. A databases from one well drilled in carbonate environments were subjected to the predictive methods. Each raw dataset is described by eight parameters including rate of penetration (ROP), true vertical depth (TVD), weight on bit (WOB), bit rotational speed (RPM), torque (TQ), flow rate (Q), equivalent circulating density (ECD), standpipe pressure (SPP), and unconfined compressive strength (UCS). First, both MRA and ANNs are tested as predictive methods. The prediction capacity of each model was also verified by using two-based error metrics: the determination coefficient (R2) and the mean square error (MSE).</p><p>The current results support the evidence that MRA and ANNs are able to be effectively utilize the drilling data, and thus provide accurate ROP prediction. However, more attention to the multiple regression analysis is required where it is implemented for ROP prediction. ANNs appear to be more conservative in predicting ROP than MRA as indicated by a higher value R2 (0.96) and lower value MSE (1.89) of the ANN model. Considering the input parameters, the obtained results showed that TVD, WOB, RPM, SPP, and ECD had the greatest effect on estimated ROP-conditions, followed in decreasing by pump flow rate, drilling torque, and rock strength. Another important point that highlights in this study is that the drilling rate may increase with depth in carbonate rocks because of their heterogeneity. This study presents new models to estimate ROP from other parameters which can help the driller to achieve an optimal drilling rate through monitoring controllable parameters.</p>
Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Modeling and Stability Analysis of an Eco-epidemiological Model
...Show More Authors

In this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.

View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Intelligent Task Scheduling Using Bat and Harmony Optimization
...Show More Authors

     Cloud computing describes computer services provided through the internet and includes a wide range of virtualization resources. Because cloud computing is made up of a sizable number of heterogeneous autonomous systems with an adaptable computational architecture, it has been widely adopted by many businesses. The scheduling and management of resource utilization, however, have become more difficult as a result of cloud computing. Task scheduling is crucial, and this procedure must schedule tasks on the  virtual machine while using the least amount of time possible. Utilizing an effective scheduling strategy enhances and expedites cloud computing services. Optimization techniques are used to resolve cloud scheduling problems.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal On Technical And Physical Problems Of Engineering
A Multiple System Biometric System Based on ECG Data
...Show More Authors

A Multiple System Biometric System Based on ECG Data

Scopus
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Regression Modeling of EDM Process for AISI D2 Tool Steel with RSM
...Show More Authors

In this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Extended Finite Element Analysis of Reinforced Concrete Beams Using Meso-Scale Modeling
...Show More Authors

Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo

... Show More
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model
...Show More Authors

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Intelligent H2/H∞ Robust Control of an Active Magnetic Bearings System
...Show More Authors

Abstract

Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance.  This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS).  Simulatio

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Performance Analysis Of Vertical Axis Wind Turbine Blades Using Double Multiple Stream Tube Process
...Show More Authors

       The interest in green energy in recent years is very noticeable, as this energy is a very important alternative that can replace fuel in many applications, most notably electric power generation, so work must be done to develop a form of this energy such as wind energy by working on the development of turbines. The DMST method provided by Qblade software is an integrated tool for making a simulation of a vertical axis wind turbine (VAWT). The simulation was carried out on vertical axis wind turbines, designing turbine blades according to symmetrical NACA0018, and calculating some parameters such as power, torque and power coefficient. It is found that this type of turbine can be improved by treating the blade edges that cont

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network
...Show More Authors

Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification

... Show More
View Publication Preview PDF
Crossref (2)
Crossref