Preferred Language
Articles
/
bIZro4YBIXToZYALj5tT
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parameters. A databases from one well drilled in carbonate environments were subjected to the predictive methods. Each raw dataset is described by eight parameters including rate of penetration (ROP), true vertical depth (TVD), weight on bit (WOB), bit rotational speed (RPM), torque (TQ), flow rate (Q), equivalent circulating density (ECD), standpipe pressure (SPP), and unconfined compressive strength (UCS). First, both MRA and ANNs are tested as predictive methods. The prediction capacity of each model was also verified by using two-based error metrics: the determination coefficient (R2) and the mean square error (MSE).</p><p>The current results support the evidence that MRA and ANNs are able to be effectively utilize the drilling data, and thus provide accurate ROP prediction. However, more attention to the multiple regression analysis is required where it is implemented for ROP prediction. ANNs appear to be more conservative in predicting ROP than MRA as indicated by a higher value R2 (0.96) and lower value MSE (1.89) of the ANN model. Considering the input parameters, the obtained results showed that TVD, WOB, RPM, SPP, and ECD had the greatest effect on estimated ROP-conditions, followed in decreasing by pump flow rate, drilling torque, and rock strength. Another important point that highlights in this study is that the drilling rate may increase with depth in carbonate rocks because of their heterogeneity. This study presents new models to estimate ROP from other parameters which can help the driller to achieve an optimal drilling rate through monitoring controllable parameters.</p>
Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
International Journal Of Computing And Digital Systems
Digital Intelligence for University Students Using Artificial Intelligence Techniques
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Modeling and Simulation of Solar Module performance using Five Parameters Model by using Matlab in Baghdad City
...Show More Authors

This work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Electric Power Systems Research
Electromagnetic transient modeling of form-wound stator coils with stress grading system under PWM excitation
...Show More Authors

The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the

... Show More
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Mon May 16 2016
Journal Name
Far East Journal Of Mathematical Sciences (fjms)
MINIMIZING WAITING TIMES USING MULTIPLE FUZZY QUEUEING MODEL WITH SUPPLY PRIORITIES
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Effluent quality assessment of sewage treatment plant using principal component analysis and cluster analysis
...Show More Authors

Sewage water is a mixture of water and solids added to water for various uses, so it needs to be treated to meet local or global standards for environmentally friendly waste production. The present study aimed to analyze the new Maaymyrh sewage treatment plant's quality parameters statistically at Hilla city. The plant is designed to serve 500,000 populations, and it is operating on a biological treatment method (Activated Sludge Process) with an average wastewater inflow of 107,000m3/day. Wastewater data were collected daily by the Mayoralty of Hilla from November 2019 to June 2020 from the influent and effluent in the (STP) new in Maaymyrh for five water quality standards, such as (BOD5), (COD), (TSS), (TP)

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Comparison of Estimation Sonic Shear Wave Time Using Empirical Correlations and Artificial Neural Network
...Show More Authors

Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Evaluation of massive multiple-input multiple-output communication performance under a proposed improved minimum mean squared error precoding
...Show More Authors

<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref