Preferred Language
Articles
/
bIZro4YBIXToZYALj5tT
Modeling Rate of Penetration using Artificial Intelligent System and Multiple Regression Analysis
...Show More Authors
Abstract<p>Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.</p><p>The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parameters. A databases from one well drilled in carbonate environments were subjected to the predictive methods. Each raw dataset is described by eight parameters including rate of penetration (ROP), true vertical depth (TVD), weight on bit (WOB), bit rotational speed (RPM), torque (TQ), flow rate (Q), equivalent circulating density (ECD), standpipe pressure (SPP), and unconfined compressive strength (UCS). First, both MRA and ANNs are tested as predictive methods. The prediction capacity of each model was also verified by using two-based error metrics: the determination coefficient (R2) and the mean square error (MSE).</p><p>The current results support the evidence that MRA and ANNs are able to be effectively utilize the drilling data, and thus provide accurate ROP prediction. However, more attention to the multiple regression analysis is required where it is implemented for ROP prediction. ANNs appear to be more conservative in predicting ROP than MRA as indicated by a higher value R2 (0.96) and lower value MSE (1.89) of the ANN model. Considering the input parameters, the obtained results showed that TVD, WOB, RPM, SPP, and ECD had the greatest effect on estimated ROP-conditions, followed in decreasing by pump flow rate, drilling torque, and rock strength. Another important point that highlights in this study is that the drilling rate may increase with depth in carbonate rocks because of their heterogeneity. This study presents new models to estimate ROP from other parameters which can help the driller to achieve an optimal drilling rate through monitoring controllable parameters.</p>
Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Statistical Analysis and Forecasting of Rainfall Patterns and Trends in Gombe North-Eastern Nigeria
...Show More Authors

Rainfall in Nigeria is highly dynamic and variable on a temporal and spatial scale. This has taken a more pronounced dimension due to climate change. In this study, Standard Precipitation Index (SPI) and Mann-Kendall test statistical tools were employed to analyze rainfall trends and patterns in Gombe metropolis between 1990 and 2020 and the ARIMA model was used for making the forecast for ten (10) years. Daily rainfall data of 31 years obtained from Nigerian Meteorological Agency, (NIMET) was used for the study. The daily rainfall data was subjected to several analyses. Standard precipitation index showed that alternation of wet and dry period conditions had been witnessed in the study area. The result obtained showed that there is an u

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Nov 01 2024
Journal Name
Process Safety And Environmental Protection
Optimized ensemble deep random vector functional link with nature inspired algorithm and boruta feature selection: Multi-site intelligent model for air quality index forecasting
...Show More Authors

View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Apr 25 2019
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
FLOW INJECTION ANALYSIS AND SPECTROPHOTOMETRIC DETERMINATION OF NIFEDIPINEIN PHARMACEUTICAL FORMULATION: FLOW INJECTION ANALYSIS AND SPECTROPHOTOMETRIC DETERMINATION OF NIFEDIPINEIN PHARMACEUTICAL FORMULATION
...Show More Authors

A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed May 22 2024
Journal Name
Scientific Reports
The use of image analysis to study the effect of moisture content on the physical properties of grains
...Show More Authors
Abstract<p>Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics </p> ... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Advances On Computational Intelligence In Energy
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
...Show More Authors

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jun 28 2023
Journal Name
Al–bahith Al–a'alami
The Future of Television Work in the Light of Artificial Intelligence Challenges an Exploratory Study
...Show More Authors

This research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
GEOSTATISTICAL ANALYSIS AND MAPPING OF OZONE OVER IRAQ
...Show More Authors

    The Ozone Monitoring Instrument (OMI) measures the reflected solar radiation in the ultraviolet and visible part in the spectral range that is between 270 and 500 nm, using two channels with a spectral resolution of about 0.5 nm. Ground-level tropospheric ozone is one of the air pollutants of most concern. In the troposphere, near the Earth's surface, human activities lead to ozone concentrations several times higher than the natural background level. To evaluate the ozone distribution over Iraq, the ozone data from OMI were analyzed using geostatistical techniques. Theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) wer

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of alkaline phosphatase, salivary flow rate and salivary potential of hydrogen in relation to severity of chronic periodontitis
...Show More Authors