There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP beam with concrete enhanced the peak load by 58.3%. Using shear connectors, web stiffeners, and both improved the peak loads by 100.6%, 97.3%, and 130.8%, respectively. The GFRP beams improved ductility by 21.6% relative to the reference one without the GFRP beam. Moreover, the shear connectors, web stiffeners, and both improved ductility by 185.5%, 119.8%, and 128.4%, respectively, relative to the encased reference beam. Furthermore, a non-linear Finite Element (FE) model was developed and validated by the experimental results to conduct a parametric study to investigate the effect of the concrete compressive strength and tensile strength of the GFRP beam. The developed FE model provided good agreement with the experimental results regarding deformations and damaged patterns.
This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
Faces of the individual in his life many stressful events, which includes expertise undesirable, and events may involve a lot of sources of tension and the risk factors and threats in all areas of life, and this would make the stressful events play a role in the genesis of many diseases physical.
The high blood pressure is one of the most Actual manifestations of mental stress in the present scale physical disorders which may frequently in men relative to women, which may be caused by spasms in the blood vessels.
Reinforced concrete barriers have been commonly used in protecting the important building because the response of R.C. barriers subjected to blast loading is practically more acceptable than other materials used to build the barriers. In this study, the response of R.C. barriers was detected due to the blast effects caused by two charge weights (50 kg and 400 kg); ANSYS 14 was used to simulate the problem. A horizontal distance of 2 m between the explosive TNT charge and the front face of wall was taken. The pressure on the front face of the concrete barriers was measured at three levels. The R.C. barrier was entirely damaged when subjected to the blast effects caused by 400 kg TNT explosion bomb. However, the 50 kg TNT charge had
... Show MoreFrustrated Total Internal Reflection FTIR phenomenon is manifested employing Newton‟s rings setup generated via a coherent light beam of a laser diode ( . All concentric bright and dark rings, except the central bright spot, were noticed to recede (disappear) when the incident angle exceeded the critical angle of 41o.
It was also shown that the current setup has proven its applicability for other tests and can give convenient results that conform with theory. Neither the concept nor the design is beyond what can be realized in an undergraduate laboratory. However, technical improvements in mounting the prism - lens may be advisable. As an extension of the experiments, the effect can be studied using hollow prism filled with liquids
Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical
... Show MoreI've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage
In this work the analysis of laser beam profile system ,using a two dimensional CCD (Charge Coupled Device) arrays, is established. The system is capable of producing video graphics that give a two dimensional image of laser beam. The video graphics system creates color distribution that represent the intensity distribution of the laser beam or the energy profile of the beam. The software used is capable of analyzing and displaying the profile in four different methods that is , color code intensity contouring , intensity shareholding, intensity cross section along two dimension x-y, and three dimensional plot of the beam intensity given in the same display.