In this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive index increases, the resonant wavelength increases due to the decrease in energy.
Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th
... Show MoreIncremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th
... Show MoreEfficacy of Several Forms of Storage Medium on Avulsed Teeth's Enamel Surface Roughness (An in Vitro Study), Rawaa Sadiq Obeid1*, Muna Saleem Khalaf2
Most dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreElectrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.
Objectives: Umbilical cord blood can be taken at birth and largely gives indication of fetal and maternal conditions. The aim of the study was to investigate the relation between sex hormones in cord blood and birth weight of newborns and pregnancy complications. Methods: Fifty cord blood samples were collected from newborns at labor room of Baghdad Teaching Hospital between May and October 2018. Blood was withdrawn from their mothers for lead analysis. Five milliliters (ml) of cord blood was taken, 3 ml was used for testosterone and estradiol analysis (using enzyme-linked immunosorbent assay) and 2 ml for lead measurement by lead care analyzer. Newborns weight and head circumference were measured. Delivered women were divided into four gro
... Show MoreThis study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration fac
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
In this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show More