Preferred Language
Articles
/
bBfc65IBVTCNdQwCmsNf
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Improve the Performance of PID Controller by Two Algorithms for Controlling the DC Servo Motor
...Show More Authors

The paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Efficient Hybrid DCT-Wiener Algorithm Based Deep Learning Approach For Semantic Shape Segmentation
...Show More Authors

    Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Facial Expression Recognition Based on Deep Learning: An Overview
...Show More Authors

      Recognizing facial expressions and emotions is a basic skill that is learned at an early age and it is important for human social interaction. Facial expressions are one of the most powerful natural and immediate means that humans use to express their feelings and intentions. Therefore, automatic emotion recognition based on facial expressions become an interesting area in research, which had been introduced and applied in many areas such as security, safety health, and human machine interface (HMI). Facial expression recognition transition from controlled environmental conditions and their improvement and succession of recent deep learning approaches from different areas made facial expression representation mostly based on u

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Sep 11 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Automated Reconstruction and Manual Curation of Amino Acid Biosynthesis Pathways in Sulfolobus solfataricus P2
...Show More Authors

The efficient sequencing techniques have significantly increased the number of genomes that are now available, including the Crenarchaeon Sulfolobus solfataricus P2 genome. The genome-scale metabolic pathways in Sulfolobus solfataricus P2 were predicted by implementing the “Pathway Tools” software using MetaCyc database as reference knowledge base. A Pathway/Genome Data Base (PGDB) specific for Sulfolobus solfataricus P2 was created. A curation approach was carried out regarding all the amino acids biosynthetic pathways. Experimental literatures as well as homology-, orthology- and context-based protein function prediction methods were followed for the curation process. The “PathoLogic”

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Collision Avoidance Using Cat Swarm Algorithm for Multi Mobile Robot Path Planning in Dynamic Environment
...Show More Authors

In this paper, we proposed a hybrid control methodology using improved artificial potential field with modify cat swarm algorithm to path planning of decoupled multi-mobile robot in dynamic environment. The proposed method consists of two phase: in the first phase, Artificial Potential Field method (APF) is used to generate path for each one of robots and avoided static obstacles in environment, and improved this method to solve the local minimum problem by using A* algorithm with B-Spline curve while in the second phase, modify Cat Swarm Algorithm (CSA) is used to control collision that occurs among robots or between robot with movable obstacles by using two behaviour modes: seek mode and track mode. Experimental results show that the p

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Classification of fetal abnormalities based on CTG signal
...Show More Authors

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining
...Show More Authors

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
View Publication Preview PDF
Scopus (37)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref