Preferred Language
Articles
/
bBfc65IBVTCNdQwCmsNf
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Prediction of Biodegradability Possibility for Sewage of the Dairy Industry
...Show More Authors

he dairy industry is one of the industrial activities classified within the food industries in all phases of the dairy industry, which leads to an increase in the amount of wastewater discharged from this industry. The study was conducted in the Abu Ghraib dairy factory, classified as one of the central factories in Iraq, located in the west of Baghdad governorate, with a design capacity of 22,815 tons of dairy products. The characteristics of the liquid waste generated from the factory were determined for the following parameters biological oxygen demand (BOD5), Chemical oxygen demand (COD), total suspended solids (TSS), pH, nitrate, phosphate, chloride, and sulfate with an average value of (1079, 1945, 323, 9.2, 24, 2

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Separation And Purification Technology
Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor
...Show More Authors

View Publication
Scopus (19)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Separation And Purification Technology
Application of central composite design approach for optimisation of zinc removal from aqueous solution using a Flow-by fixed bed bioelectrochemical reactor
...Show More Authors

View Publication
Scopus (19)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Colloids And Surfaces A: Physicochemical And Engineering Aspects
Application of natural deep eutectic solvents in bulk liquid membrane system for removal of free glycerol from crude fatty acid methyl ester
...Show More Authors

Fatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.

... Show More
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Feb 15 2023
Journal Name
Environmental Technology
Bio-synthesis of TiO<sub>2</sub> using grape leaves extract and its application for photocatalytic degradation of ibuprofen from aqueous solution
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jun 28 2023
Journal Name
The Iraqi Journal Of Veterinary Medicine
Application of RAPD-PCR and Phylogenetic Analysis for Accurate Characterization of Salmonella spp. Isolated from Chicken and Their Feed and Drinking Water
...Show More Authors

The aim of this study was ‎the‎ discrimination of Salmonella‎‎ isolated from chicken and their feed ‎and drinking water for the epidemiological control of salmonellosis. Totally, 289 samples, ‎including 217 chicken cloaca swabs, 46 water, and 26 feed samples were collected from five ‎different farms in Karbala governorate, Iraq. Conventional bacteriology tests, API 20E, Vitek 2, ‎and serology were used for bacterial identification. Random amplified polymorphic ‎DNA (RAPD)-polymerase chain reaction (PCR) was applied to analyze the genetic relationships ‎among Salmonella‎‎ isolates. The isolation rate of Salmonella‎‎ spp. was 21.1% (61/289). While the ‎water samples constituted the highest rate (30.4%), a rate of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Al-academy
The role of artificial intelligence in revolutionizing the clothing and textile industry
...Show More Authors

 The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref