Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.
The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le
... Show MoreIn Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreExamining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference
... Show MorePermeability data has major importance work that should be handled in all reservoir simulation studies. The importance of permeability data increases in mature oil and gas fields due to its sensitivity for the requirements of some specific improved recoveries. However, the industry has a huge source of data of air permeability measurements against little number of liquid permeability values. This is due to the relatively high cost of special core analysis.
The current study suggests a correlation to convert air permeability data that are conventionally measured during laboratory core analysis into liquid permeability. This correlation introduces a feasible estimation in cases of data loose and poorly consolidated formations, or in cas
The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThis study was carried out to study effect of magnetic water ( M0 and M) and different concentrations of coconut extract in Fragaria x ananassa (Duch) C.V Festival. The results showed significant differences in the plants treated with magnetic water ( 0.12 Tesla) and different concentrations of coconut extract C1 (0%), C2 (2.5%), C3 (5%), C4 (7.5%) and C5 (10%) in vegetative parameters as in leaf area and chlorophyll in treatment M0C3 was (53.72 Dcm2, 50.00), respectively, highest leaf number and plant dry weight in MC4 (12.77,14.22 gm), respectively. Results recorded significant differences in fruit parameters such as weight in MC1 (18.97 gm). The maximum fruit number was in MC3 (110), the greatest fruit size was in MC4 (15.78 cm3) and the
... Show MoreImage Fusion Using A Convolutional Neural Network