There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to assess the electroanalytical performance of the electrodes after modification. The results showed that using AuNPs and PPy for modification of ITO/f-MWCNTs-GR electrode surfaces is conducive to augmenting the electrochemical performances of the electrodes. ITO/f-MWCNTs-GR showed better results in terms of higher electroactive area formation after modification with PPy and AuNPs. This work aims to figure out how to develop electrochemical biosensors for improved genosensor monitoring.
This work investigates removing the Malachite Green (MG) dye, the poly acrylic hydrogel beads used as a surface to adsorb the dye, the isotherm of adsorption was examined and aspects that influence it, like increasing heat, adding salt, the influence of dry beads and effect of shaking. according to the results, the effect of the adsorption has been found that it is matched to the Friendlish equation much more than Langmuir and Temkin equations. A positive relationship between the adsorption process and the increase in temperature is found that adsorption increases when the temperature increase. Also, the adsorption increased when the salt was added at a temperature (of 20 C0). As that the adsorption doesn’t budge by adding either
... Show MoreCarbon Nanopowder was fabricated by arc discharge technique at deposition pressure of 10-5 mbar Argon gas on glass substrates. The prepared carbon nano- powder was collected from chamber and purified with nitric acid at 323K .The morphology and crystalline structure of the prepared powder was examined by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), and Scanning Electron Microscope (SEM). XRD spectrums showed that the powder exhibits amorphous structure and after purification, the powder showed hexagonal structure with a preferential orientation along(002) direction ,where AFM and SEM gave very compatible estimation on the grain size and shape of the nanopowder.
Abstract. The main technique for removing bacteria from water for various applications is chemical disinfection. However, this method has many disadvantages such as producing disinfectant by-products (DBPs), biofilm formation and either rendering the water unpotable (at high residual disinfection) or leaving a potential for lethal diseases such as Cholera (if the residual disinfection is too low). Recently, a process was developed for continuous removal of bacteria from water using the principle of froth flotation through compressed air only without any chemicals (Hassan, 2015). This work examines the extent to which chemical free froth flotation can purify drinking water. The experiments were carried out using two flotation columns
... Show MoreThis study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the
... Show MoreDrug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti‐cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti‐cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti‐cancer drugs and also radiotherapy. Resistance to therapy can increase mortal
This study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the solve
... Show MorePhenol condensed with β-keto esters via Pechmann condensation to form derivatives of Coumarin in various reaction conditions by two ways. Present paper is comparative study of synthesis Coumarin with the yield of product , reaction time and reaction conditions.
This work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best op
Gypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre
