Preferred Language
Articles
/
bBfDUJEBVTCNdQwCppQf
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
THE IMPACT OF MANAGEMENT CONTROL SYSTEMS (MCS) ON ORGANIZATIONS PERFORMANCE A LITERATURE REVIEW
...Show More Authors

The impact of management control systems (MCS) on organizations performance empirical research has been the subject of numerous studies during the past decade in developed and emerging economies. In the contemporary competitive, complex and changing global business environment, firms are being challenged to adopt business models that enable them to address the strategic uncertainties and risks they face in their business environments. The main issue of this study is that management accounting researchers argue that one of the ways firms can continually rejuvenate themselves to survive and succeed in these complex and uncertain environments is to understand the role of management control systems in Formulating a b

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Tue Feb 24 2015
Journal Name
Robotica
Multi-level control of zero-moment point-based humanoid biped robots: a review
...Show More Authors
SUMMARY<p>Researchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped </p> ... Show More
View Publication
Scopus (35)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Access Control Security Review: Concepts and Models
...Show More Authors

Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Access Control Security Review: Concepts and Models
...Show More Authors

HS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020

View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering
Load balance in data center SDN networks
...Show More Authors

In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and

... Show More
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon Mar 28 2022
Journal Name
Journal Of Physical Education
The Effect of Using a Teaching Aid on Learning Backswing to Handstand on Rings in Youth Artistic Gymnastics
...Show More Authors

               The research aimed at designing a teaching aid for learning backswing into handstand as well as identifying its effect on learning skill performance. The researchers hypothesized statistical differences between pre and post-tests in favor of the research group. They used the experimental method on six (13 – 16) year–old Baghdad club gymnasts. The researchers used the one group design in which all players perform pretests followed by special tests on the teaching aid than are tested posttests. The researchers conclude that the teaching aid positively affected learning the skill as well as the teaching aid was very good and endured the performance of all gymnasts. The researcher recommended making simi

... Show More
Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref