According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
Sediments samples from ten stations along the Euphrates River and seven
samples from selected springs within Al –Anbar governorate, (western part of Iraq),
were collected and analyzed for radioactivity. Sediments samples were dried at 100
ºC for 24 hours. Radioactivity in 1 kg of each sample was measured using gamma
spectrometer system based on a pure germanium detector with efficiency 30%. The
activity of Ra-226, Th-232, K-40 were measured to be within the typical average of
the radioactivity in sediment in world rivers, while relatively elevated concentration
were found in the sediment of some of the studied spring. In current study activity
concentrations of Cs-137 in the sediments were detected which may be
Celery and coriander are vastly applied in modern medicine and traditionally because various medicinal and nutritional benefits depend on their medicinal characteristics. The study aimed to detect, isolate and compare extracts contents of phenolic acids (caffeic and p-coumaric acids) in ethyl acetate fraction of fresh and dry aerial parts of coriander (Coriandrum sativum L.) and celery (Apium graveolens L.) of the Apiaceae family. The extraction of these constituents was carried out by maceration method using 70% ethanol and fractionation was done by using petroleum ether, and ethyl acetate. The existence of caffeic and p-coumaric acids in aerial part extracts of two plants was identified by thin-layer chromatography (TLC) and high-
... Show MoreOn the basis of known coumarin-based prodrug system, a novel coumarin-based mutual prodrug of 5-fluorouracil and dichloroacetic acid was designed, synthesized and evaluated as a promising oral chemotherapeutic agent basing on in vitro stability study in HCl buffer (pH 1.2) and in phosphate buffer (pH 7.4), as well as in vitro release study in human serum. The chemical structure of prodrug was confirmed by analyzing its FTIR, 1H NMR, 13C NMR and MS-ESI spectra. The results of in vitro kinetic study indicated that the prodrug was significantly stable in HCl and in phosphate buffers, and was hydrolyzed in human serum followed pseudo first order kinetics.
Keywords: Coumarin-bas
... Show MoreMagnesium oxide nanoparticles (MgO NPs) were synthesized by a green method using the peels of Persimmon extract as the reducing agent , magnesium nitrate, and NaOH. This method is eco-friendly and non-toxic. In this study, an ultrasound device was used to reduce the particle size, with the impact on the energy gap was set at the beginning at 5.39 eV and then turned to 4.10 eV. The morphological analysis using atomic force microscopy (AFM) showed that the grain size for MgO NPs was 67.70 nm which became 42.33 nm after the use of the ultrasound. The shape of the particles was almost spherical and became cylindrical. In addition the Field-Emission Scanning Electron Microscopy (FESEM) analysis sh
... Show MoreIn oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening
... Show MoreCopper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreWe described herein the synthesized and characterized of new bent and liner core compounds containing thiazolidin-4-one ring[XI-XIII] and [XIV-XVI] respectively. These compounds synthesized by sequence reactions starting from reaction resorcinol or hydroquinone with chloracetyl chloride to yield compounds [I] and [II] ,then the later compounds reactant with 4-hydroxybenzylaldehyde to product dialdehyde compounds [III] and [IV] .The Schiff bases compounds[V-VII] and [VIII-X] synthesized from reaction the compound [III] or [IV] with different aromatic amines, while the bent and liner core mesogens containing thiazolidin-4-one ring [XI-XIII] and [XIV-XVI] synthesized from reaction Schiff bases compounds[V-VII] or [VIII-X]
... Show MoreCadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show More