According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
This study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
... Show MoreThe whole world and the Arab world, especially an important part of this international system, is undergoing a radical transformation at all levels. This mosaic of political, economic, social and military relations and alliances, whether based on the special interests of the major Powers or on the basis of mutual interests, The major transformations to social, economic, political and military conflict and these transformations still bear more surprises, at all levels, nothing remains constant, all changed, relations changed and alliances changed and loyalties fell and the principles of the M changed and the spectacular imperial economies collapsed and the will of the masses was no longer fixed.
Sustainability is a major demand and need pursued by cities in all areas of life due to the environmental, social and economic gains they provide, especially in the field of city planning and urban renewal projects that aim to integrate the past, present and future.
The research aims to evaluate the Haifa Street renewal project, and Al-Shawaka district, one of the Baghdad districts located next to Al-Karkh, was elected by comparing the sustainability indicators of urban renewal with the reality of the situation through a field survey and questionnaire form and focusing on the social and economic impacts and environmental for the project on the study area. To reach the most important conclusions and recommendations
... Show MoreThis study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreABSTRACT Pulmonary alveolar microlithiasis is rare infiltrative pulmonary disease characterized by intra-alveoli deposition of microliths. We present a familial case of an adult female with complaint of progressive shortness of breath on exertion. Chest radiograph showed innumerable tiny dense nodules, diffusely involving both lungs mainly the lower zones. High-resolution CT scan illustrated widespread intra-alveolar microliths, diffuse ground-glass attenuation areas and septal thickening predominantly in the basal regions. Chest radiograph is all that is needed for the diagnosis of this case but CT scan was done to demonstrate the extent and severity of this disease
Soil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics and are particularly relevant in the context of irrigation management. A study was carried out to obtain the SWRC, inflection point, S index, pore size distribution curve, macro porosity, and air capacity from samples submitted to saturation and re-saturation processes. Five different-texture disturbed soil samples Sandy Loam, Loam, Sandy Clay Loam, Silt Loam, and Clay were collected. After obtaining SWRC, each air-dried soil samples were submitted to particle size distribution and clay dispersed in water analyses to verify the soil lost clay. The experimental design was completely randomized with three replications using two processes of SWRC (saturat
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show More