According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
This research examines the quantitative analysis to assess the efficiency of the transport network in Sadr City, where the study area suffers from a large traffic movement for the variability of traffic flow and intensity at peak hours as a result of inside traffic and outside of it, especially in the neighborhoods of population with economic concentration. &n
... Show MoreIn this research was to use the method of classic dynamic programming (CDP) and the method of fuzzy dynamic programming (FDP) to controlling the inventory in N periods and only one substance ,in order to minimize the total cost and determining the required quantity in warehouse rusafa principal of the ministry of commerce . A comparison was made between the two techniques، We found that the value of fuzzy total cost is less than that the value of classic total cost
This paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
Artificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show MoreLaboratory and field experiment were conducted at MustansiryahUniversity in 2010 to investigate the possible allelopathic potential ofDigitariasanguinalis (L.) Large crabgrass andClerodenduminerme on the seed germination and seedling growth of bladygrass (Imperata cylindrica), the results showed areduce of 44%and 43% in seed germinationby leaves extracts ofClerodenduminermeandDigitariasanguinalisrespectively in 50% concentration and 61% and 62% in 100% concentration. Root and shoot length of blady grass seedlings growth were reduced by an average of 75-70%. Field experiments indicated thatcrude material of Clerodenduminerme and Digitariasanguinalisin50 gm/ m2 gave the highest control on blady grass than the
... Show MoreThis work aimed to design and testing of a computer program – based eyeQ improvement, photographic memory enhancement, and speed reading to match the reading speed 150 – 250 word per minute (WPM) with the mind ability of processing and eye snap shooting 5000WPM . The package designed based on Visual Basic 6. The efficiency of the designed program was tested on a 10 persons with different levels of education and ages and the results show an increase in their reading speed of approximately 25% in the first month of training with noticeable enhancement in the memory as well as an increase in the ability to read for longer time without feeling nerves or boring, a nonlinear continuously increase in reading speed is assured after the first mo
... Show MoreThe electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Ever
... Show More