According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreGreen buildings are considered more efficient than traditional buildings due to the incorporated techniques and the multidisciplinary specializations required to comply with their specifications, in addition to the advanced commissioning, which undergoes before handing over the buildings to the owners to ensure requirements conformance. As a result, the appropriate selection of a project delivery system acts as the essential factor that affects the performance of the project. This research aims at building a system that helps to select the best method to implement green buildings. Through studying the recent research approaches in project delivery systems, the factors that affect the selection of the optimal implementation method fo
... Show MoreThis work represents implementation and investigation of optical coherent communication system between two computers. A single mode optical fiber is selected as transmission medium. The data are sent via the RS-232 standard interface with a bit rate of 9.6 kbps from personal computer (PC1) by line receive to convert the data from electrical levels (-12/+12 V) into TTL level (0/5 V). The modulation of this data was accomplished by internal modulation using laser diode type (HFCT-5208M) 1310 nm wavelength. The optical D-coupler was used to combine the optical signal that come from laser source with optical signal of laser local oscillator (OTS-304XI) at 1310/1550 nm wavelength to obtain coherent (homodyne and heterodyne) detection respective
... Show MoreIn this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control
... Show MoreCNC machines are widely used in production fields since they produce similar parts in a minimum time, at higher speed and with possibly minimum error. A control system is designed, implemented and tested to control the operation of a laboratory CNC milling machine having three axes that are moved by using a stepper motor attached to each axis. The control system includes two parts, hardware part and software part, the hardware part used a PC (works as controller) connected to the CNC machine through its parallel port by using designed interface circuit. The software part includes the algorithms needed to control the CNC. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD or 3D MAX and is saved in a we
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show More
The current research aims to identify the perceptual speed of the university students as well as to identify the differences in the level of perceptual speed for the university students according to the variables of (male, female) specialization (scientific, human) university (Baghdad, Mustansiriya). Additionally, the research aims to identify the prevalence of emotional pattern and to identify the relationship between perceptual speed and the emotional patterns among university students. The researcher designed a questionnaire to measure the Emotional Patterns based on Jerome Freedman perspective. As for perceptual speed, the researcher adopted French, Extrom and Price scale (1963), which was tran
... Show More