According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
Quality is one of the important criteria to determine the success of product. So quality control is required for all stages of production to ensure a good final product with lowest possible losses. Control charts are the most important means used to monitor the quality and its accuracy is measured by quickly detecting unusual changes in the quality to maintain the product and reduce the costs and losses that may result from the defective items. There are different types of quality control charts and new types appeases involving the concept of fuzziness named multinomial fuzzy quality control chart (FM) , dividing the product to accepted and not may not be accurate therefore adding fuzziness concept to quality charts confirm and a
... Show MoreBackground: Oral squamous cell carcinoma (OSCC) remains a lethal and deforming disease, with a significant mortality and a rising incidence in younger and female patients. It is thus imperative to identify potential risk factors for OSCC and oral PMDs and to design an accurate data collection tool to try to identify patients at high risk of OSCC development. 14 factors consistently found to be associated with the pathogenesis of OSCC and oral PMDs. Eight of themwere identified as high risk (including tobacco, alcohol, betel quid, marijuana, genetic factors, age, diet and immunodeficiency) and 6 low risk (such as oral health, socioeconomic status, HPV, candida infection, alcoholic mouth wash and diabetes) were stratified according to severit
... Show MoreThis research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show MoreThe removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreAbstract:
The researcher shed light on a diet in Iraq before 2003 became in this period. And how the ration card has a variety of vocabulary and cover the need of the population of commodities and have a key role in saving Iraq from a real crisis in the period of economic siege, especially in light of the State's direction to support the agricultural sector, which in that period able to fill half of the market needs of food the basic. As well as providing strategic storage at the Ministry of Commerce enough for six months But after the events of 2003 and the crises that hit the country and the unstable security situation began to rise voices calling for reform of the ration card system as a system that is a burden on the
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi
... Show MoreNEACADEMY's JOURNALS
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show More