The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to minimize the total costs, Where the approved model was able to minimize the total costs by 25%. A future study investigating optimization heuristic with stochastics demand would be very interesting.
In this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.
And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)
... Show Morein this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix.
The effect of both shear deformation and the coupling between axial force and the bending moment are considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by numerical examples. It is found that the coupling effect between axial force and bending moment is significant for elements having axial end restraint. It was found that the decrease in bending moment was
in the
هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show More