In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
In this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.
Objective : A descriptive analytical study was conducted on pregnant women who face domestic
violence and receive antenatal services from obstetric wards ikou^V Ctemal ^4M^vrAd\vQ^Ms> "&
Baghdad city, to identify the types of domestic violence on pregnant woman.
Methodology : A purposive sample of one hundred pregnant women with domestic violence was
selected. Data were collected through questionnaire, the period extended from the 20th Feb to the 3rd
May 2006. Descriptive and inferential statistical procedures were used to analyze the data.
Results : The result of the study showed that the highest percentage (26%) of the study sample their
age ranges from (30 - 34) years, most of them were housewife with low s
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThe current study introduces a novel method for calculating the stability time by a new approach based on the conversion of degradation from the conductivity curve results obtained by the conventional method. The stability time calculated by the novel method is shorter than the time measured by the conventional method. The stability time in the novel method can be calculated by the endpoint of the tangency of the conversion curve with the tangent line. This point of tangency represents the stability time, as will be explained in detail. Still, it gives a clear and accurate envisage of the dehydrochlorination behavior and can be generalized to all types of polyvinyl chloride compared to the stability time measured by conventional ones based
... Show MoreCollapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreThe method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show More