The Influence of annealing temperature on the optical properties of (CuInSe2) thin films was studied. Thermal evaporation in vacuum technique has been used for films deposited on glass substrates, these films were annealed in vacuum at (100C°, 200C°) for (2 hours). The optical properties were studied in the range (300-900) nm. The obtained results revealed a reduction in energy band gap with annealing temperature . optical parameters such as reflectance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, skin depth and optical conductivity are investigated before and after annealing. It was found that all these parameters were affected by annealing temperature.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
The structural, optical properties of cupper indium gallium selenite (CuIn1-xGaxSe) have been studied. CuIn1-xGaxSe thin films for x=0.6 have been prepared by thermal evaporation technique, of 2000±20 nm thickness, with rate of deposition 2±0.1 nm/sec, on glass substrate at room temperature. Heat treatment has been carried out in the range (373-773) K for 1 hour. It demonstrated from the XRD method that all the as-deposited and annealed films have polycrystalline structure of multiphase. The optical measurement of the CIGS thin films conformed that they have, direct allowed energy gap equal to 1.7 eV. The values of some important optical parameters of the studied films such as (absorption coefficient, refractive index, extinction coeffici
... Show MoreThe effect of thermal annealing on some structural and optical properties of ZnSe thin films was studied which prepared by thermal evaporation method with (550±20) nm thickness and annealing at (373,473)K for (2h), By using X-ray diffraction technique structural properties studied and showed that the films are crystalline nature and have ( cubic structure ) .From the observed results after heating treatment, We found that the annealing to perform decreases in grain size and increases in dislocation and observed the optical properties increase in absorption and decrease in transmission. From absorption spectra optical energy gap calculated about (2.66,2.68)eV which decreases value after heating treatment
Effect of the thermal annealing at 400oC for 2 hours and Argon laser radiation for half hour on the optical properties of AgAlS2 thin films, prepared on glass slides by chemical spray pyrolysis at 360oC with (0.18±0.05) μm thickness .The optical characteristics of the prepared thin films have been investigated by UV/Vis spectrophotometer in the wavelength range (300 – 1100)nm .The films have a direct allow electronic transition with optical energy (Eg) values decreased from (2.25) eV for untreated thin films to (2.10) eV for the annealed films and to (2.00) eV for the radiated films. The maximum value of the refractive index (n) for all thin films are given about (2.6). Also the extinction coefficient (K) and the real and imaginary d
... Show MoreIn this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption s
... Show MorePolymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect
... Show MoreThe electrical properties of Poly (ethylene oxide)-MnCl2 Composites were studied by using the impedance technique. The study was carried out as a function of frequency in the range from 10 Hz to 13 MHz and MnCl2 salt concentration ranged from 0% to 20% by weight. It was found that the dielectric constants and the dielectric loss of the prepared films increase with the increase of the MnCl2 concentration; The A.C. conductivity increases with the increase of the applied frequency, and the MnCl2 content in the composite membrane. Relaxation processes were observed to take place for composites which have a high salt concentration. The observed relaxation and polarization effects of the composite are mainly attributed to the dielectric
... Show More