One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams. Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.
Milling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness. Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is v
... Show MoreThis work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.
The r
... Show MoreFriction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
d
The combustion and pyrolysis processes of sewage sludge were studied in the current report. Two kinds of sewage sludge(SS) were used, SS the sewage sludge was not treated, while SS-U90KHz the ultrasonic bath pre-treated sewage sludge with a frequency of 90KHz was not treated. Wastewater treatment plants are the origins of waste sludge. Analyses were performed roughly and finally. Thermogravimetric research analyzed the thermal behaviour of the analysed sewage bucket (TGA). The samples were heated at a constant rate of 25 to 800 Celsius by air (combustion) and nitrogen flow (pyrolysis). For sludges which have been investigated. In the TG/DTG curves, comparable thermal profiles were available. All of the TG/curves DTG’s were divided into th
... Show MoreFlexible pipes, such as GRP pipes, serve as effective underground infrastructure especially as sewer pipeline. This study is an attempt for understanding the effects of bedding types on the behavior of large diameter GRP flexible sewer pipes using three dimensional finite element approaches. Theoretical and numerical analyses were performed using both BS EN 1295-1 approach and finite element method (ABAQUS software). The effects of different parameters are studied such as, depth of backfill, bedding compaction, and backfill compaction. Due to compaction, an increase in the bedding compaction modulus (E’1) results in a reduction of both stresses and displacements of the pipe, especially, for well compacted ba
... Show MoreWhen the guard honey bees, Apis mellifera L., form a clump at the hive entrance or on the flight board, the oriental hornet, Vespa orientails L., either creeps toward the clump or hovers over it in order to take a bee. Once the hornet creeps, only few bees facing the hornet become alert, rock their heads and antennae, open their wings, and take a posture of defense. The rest of the clump stays listless without any signal of concern. However, the clump stays dense and the defending bees do not detach themselves neither from the rest of the clump nor from each other. For this reason, it is very difficult for the hornet to grab a bee unless the latter makes a “mistake” by detaching herself from other adjacent bees. If the hornet grabs s
... Show MoreThe Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
During the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu
This research is carried out to study the effect of the external post-tensioning technique on the flexural capacity of simply supported composite castellated beam experimentally. In this research, seven composite castellated beams having the same dimensions and material properties were cast and tested up to failure by applied two concentrated loads at 700 mm from each end. Two external strands of 12.7 mm diameter were fixed at each side of the web of strengthening beams and located at depth 180 mm from top fiber of the section (dps) at each end of the beam. The strands have been tensioned by using a hydraulic jack with a constant stress of 100 MPa. This research aims to study the effect of the strengthening by different shapes of st
... Show More