Preferred Language
Articles
/
bBYxKocBVTCNdQwCmzv4
Influence of Fire-Flame Duration and Temperature on the Behavior of Reinforced Concrete Beam Containing Water Absorption Polymer Sphere; Numerical Investigation
...Show More Authors

One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams. Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.

Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus (17)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

View Publication
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Fatigue Behavior Of Chopped Carbon Fiber Reinforced Epoxy Composites
...Show More Authors

Hand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Materials Today: Proceedings
The influence of water-gypsum ratio on the properties of national gypsum (Jοss) for various additives
...Show More Authors

View Publication
Scopus (12)
Crossref (6)
Scopus Crossref
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
INFLUENCE OF PHYSICAL PROPERTIES OF WATER-ADJUVANT MIXTURE ON THE DROPLET STAINS DEPOSITING ON AN ARTIFICIAL TARGET
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering Geology And Hydrogeology
Impact of Asphalt Stabilization on Deformation Behavior of Reinforced Soil Embankment Model under Cyclic Loading
...Show More Authors

Gypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sat Jan 13 2024
Journal Name
Journal Of Advanced Research In Fluid Mechanics And Thermal Sciences
Influence of Surrounding Air Temperature and Humidity upon the Performance of a Gas Turbine Power Plant
...Show More Authors

Nowadays, energy demand continuously rises while energy stocks are dwindling. Using current resources more effectively is crucial for the world. A wide method to effectively utilize energy is to generate electricity using thermal gas turbines (GT). One of the most important problems that gas turbines suffer from is high ambient air temperature especially in summer. The current paper details the effects of ambient conditions on the performance of a gas turbine through energy audits taking into account the influence of ambient conditions on the specific heat capacity ( , isentropic exponent ( ) as well as the gas constant of air . A computer program was developed to examine the operation of a power plant at various ambient temperature

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Strengthening of GFRP Reinforced Concrete Slabs with Openings
...Show More Authors

Using fiber-reinforced polymer (FRP) could effectively improve the strength and endurance of reinforced concrete (RC) constructions. This study evaluated the flexural behavior of one-way concrete slabs with openings reinforced with glass fiber-reinforced polymers (GFRP) bars. It strengthened using carbon fiber-reinforced polymer (CFRP) sheets around the openings. The experimental program of this study is adopted by casting and testing four one-way concrete slabs with dimensions of (150*750*2650) mm. These slabs are divided into two groups based on whether they were strengthened or un-strengthened. For each group, two different openings (either one rectangular or two square) measured 250*500 mm and 250*250 mm, respective

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Performance of Reinforced Concrete Beams with Multiple Openings
...Show More Authors

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Strength of Reinforced Concrete Columns with Transverse Openings
...Show More Authors

The present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load

... Show More
View Publication Preview PDF